
FEBRUARY 1996 Delphi INFORMANT ▲ 1

34 The Way of Delphi — Gary Entsminger
Last month, Mr Entsminger recounted great journeys and single steps
in object-oriented development, and discussed two technologies:
Dynamic Data Exchange (DDE) and Object Linking and Embedding
(OLE). This month, he continues the discussion and introduces OLE
capabilities you can build into your Windows 95 applications.

REVIEWS
42 HyperTerp Pro — Product review by Robert Vivrette

There may be times when a user needs to add or modify the function-
ality of a delivered Delphi application. But how can you provide this to
the user without making the source code available? Implement a
scripting language, such as HyperTerp Pro, says Mr Vivrette.

44 WISE Installation System — Product review by Micah Bleecher
Roughly broken down, a Windows application development cycle
involves designing, building, testing, deploying, and finally,
installing. If you’re in the market for a capable installation utility,
Mr Bleecher strongly recommends the WISE Installation System.

DEPARTMENTS
2 Editorial
3 Delphi Tools
5 Newsline

ON THE COVER
7 Delphi 2.0 — Richard Wagner

It’s official — Delphi 2.0 has all the power and functionality of
the 16-bit version, with astounding new features. Sporting new
UI controls, database enhancements, visual form inheritance, a
revved-up IDE, and much much more, Delphi 2.0 is ready for
launch. Mr Wagner introduces the new tool and even provides
us with a taste of its multithreading capability.

FEATURES
13 Informant Spotlight — Jeff Chant

Delphi’s Outline component is the principal control for presenting
hierarchically-related data in your Windows applications. If you’ve
never used this powerful control, or are just now learning to use it,
then this article is for you. Mr Chant takes us through the intricacies
of TOutline with an interactive example.

22 OP Tech — Bill Todd
Error handling is serious business. So serious, in fact, that this
month Mr Todd begins a two-part series on handling errors in
Delphi applications. He covers the use of the Create, Free, and
Dispose methods to help with allocating resources and cleanup,
discusses trapping for RTL exceptions, and will help you under-
stand the RTL exception hierarchy.

27 DBNavigator — Cary Jensen, Ph.D.
This month, Dr Jensen completes his two-part series on filtering
Paradox data in Delphi applications. First, he compares the use
of Table and Query components to filter data, and then shows
you that the Query component — combined with a bit of SQL
— is an effective tool to get the data you’re after.

February 1996 - Volume 2, Number 2

Cover Art By: Tom McKeith

Serendipity!
Delphi 2.0 Makes Its Debut

Symposium
Straight line exists between me and the good thing.
I have found the line and its direction is known to me.
— David Byrne, “The Good Thing”
Talking Heads, More Songs about Buildings and Food
V isual programming without walls. Delphi 1.0 — and only Delphi 1.0 — makes it possible for the
Windows 3.x environment. Now Delphi 2.0 offers it for Windows 95 development.
Test PowerBuilder Visual Basic 3.0 Delphi 1.0 Delphi 2.0
(loops/sec.) 3.0 (16-bit) (16-bit) (16-bit) (32-bit)
Sieve 0.22 11.95 52.77 179.37
Whetstone 0.04 1.41 4.70 15.53
File write 0.05 0.42 0.74 2.89
File read 0.05 0.33 1.75 5.28
Just as it did the first time I
fired it up, Delphi continues
to dazzle me with its myriad
qualities: speed, power, ele-
gance, ease-of-use, extensibili-
ty, sound design, and —
something else. Let’s call it
extravagance. Yes, Delphi 2.0’s
feature set is nothing short of
extravagant. How else can you
refer to a product which —
just for starters — offers over
90 ready-made components?

With no real head-to-head com-
petition for Delphi 1.0, and a
less-than-hurried acceptance of
Windows 95 in the business
world, Borland decided to
spend a little extra time with
Delphi 2.0 and add even more
features. The result is impres-
sive, and is described by DI
Contributing Editor, Richard
Wagner, beginning on page 7.

But this isn’t Richard’s first
look at Delphi 2.0. He initially
previewed it for us in October
of last year. This month’s offer-
ing is really an update that
describes the changes made
since then. In case you missed
that issue, let me give you a
quick run down.

All that is necessary to turn a
Delphi 1.0 application into a
fully-functional, 32-bit,
Windows 95 application, is to
recompile it under Delphi 2.0
(unless, of course, you make
an exotic API call, i.e. one that
has changed or is no longer
FEBRUARY 1996
supported in Windows 95).
It’s also important to note that
Windows 95 does not support
VBXes, thus Delphi 2.0 does
not support them. This could
be painful if you’re relying on
a VBX that hasn’t made the
metamorphosis into an OCX,
although most have.

There are other changes that
are integral with a move to
Windows 95. As Mr Wagner
pointed out in October, there
is no more 64KB limit, and
Integer and Cardinal values are
now 32-bit. Also, Borland has
been careful to comply with all
Windows 95 UI standards.

And okay, despite all the nice
things I said earlier, Delphi
1.0 — or more properly,
Object Pascal 1.0 — does
have one annoying character-
istic: its meshugeh, 255-char-
acter string type. But that’s
been taken care of with
Delphi 2.0. You can have
strings as long as you like.
Better yet, they behave as
Pascal strings and as C (null-
terminated) strings, which will
sure make those API and DLL
calls easier. Besides the greatly
enhanced string type, Object
Pascal 2.0 offers two entirely
new data types: the variant
type can store a string, integer,
or floating-point value and is
particularly useful for OLE
automation; and the
ANSIChar type has been
added to support Unicode.
Delphi 2.0 also sports a greatly
enhanced compiler that deliv-
ers executables even faster than
those of Delphi 1.0 (see table).
Moreover, the compiler now
shares the same back-end as
Borland’s C++ product, mak-
ing it possible, for example, to
compile .OBJ files directly
into your Delphi applications.
In short, Delphi 2.0 is an
impressive upgrade to an
already awesome product, and
a testament to the solid foun-
dation upon which it is built.

Moving to another topic, your
response to our new Web site
has been overwhelmingly posi-
tive. Here’s a sample:

Dear Editor,
Thanks for the web site! I’m
an avid reader of Delphi
Informant and very glad
you’ve added a new dimen-
sion to your publishing. Now
I’m able to locate files ...
spotlighted in the monthly
articles. You don't know how
useful that can be.

Keep up the good work,
and the web site.

Your loyal reader,
Wai Chong
And speaking of the
Informant Communications
Group Web site — at
www.informant.com, natch
— don’t forget to cast your
ballot for the First Annual
Delphi Informant Reader’s
Choice Awards. You can also
have your say on our
CompuServe forum (GO
ICGFORUM), or by just
mailing in the Official Ballot
you’ll find later in this issue.
And about that ballot. It
contains two farshtunken
errors: 1) the results will
appear in the April issue, and
2) the voting deadline is
February 20, 1996. The win-
ners will be announced, for
the first time, in late March
at Software Development 96
West at Moscone Center in
San Francisco.

Thanks for reading,

Jerry Coffey, Editor-in-Chief

Internet: jcoffey@informant.com
CompuServe: 70304,3633
Fax: 916-686-8497
Snail: 10519 E. Stockton
Blvd., Ste. 142,
Elk Grove, CA 95624
Delphi INFORMANT ▲ 2

FEBRUARY 1996

New Delphi Book

Teach Yourself Database
Programming with Delphi in 21 Days

Nathan and Ori Gurewich
Sams Publishing

ISBN: 0-672-30851-7
Price: US$39.99, Canada
$53.99 (569 pages, CD-ROM)
Phone: (800) 428-5331

Delphi
T O O L S

New Products
and Solutions
Now Shipping: Apollo 2.0 For Delphi

SuccessWare International,

of Temecula, CA, is shipping
Apollo 2.0, an alternative to
Borland’s Database Engine
(BDE) in Delphi. Apollo 2.0
is designed to be smaller and
faster than the current XBase
DBMS engine, without
requiring the BDE or
ODBC.

The Replacement Database
Engine (RDE) technology
allows for record-based
(xBASE) data-table naviga-
tion and management syntax
during program develop-
ment, with minimal concern
for the ultimate format of
the database. As a “no-code”
replacement for the BDE,
Apollo 2.0 can be installed
into an existing application
with no source code changes.
This allows for multi-user
access of xBASE data files
from legacy applications. All
concurrent-access record/file-
locking is compatible with
existing FoxPro and Clipper
applications. Apollo 2.0 sup-
ports CA-Clipper (NTX),
FoxPro2.x (IDX/CDX), and
HiPer-SIx (NSX) systems.

Apollo 2.0 introduces new fea-
tures to the Delphi marketplace,
including Freeform-Text
Searching (allows text docu-
ments to be embedded in data
files with instantaneous
retrieval); VariField support
(fixed-length fields that auto-
matically expand to meet the
input requirements);
image/BLOb support in memo
fields (storage and retrieval with-
out intermediate files); condi-
tional indexes (only adds the
records meeting a query/FOR
condition); index SCOPES
(instant index filters for control
over the database views); and
record-level data encryption.

Price: Apollo 2.0, US$179; Apollo 2.0 Pro
(includes Delphi VCL source code), US$269.
Both are royalty-free, and include 30 days
of free voice and unlimited fax,
CompuServe, or BBS technical support.
Contact: SuccessWare International,
27349 Jefferson Ave., Ste. 101,
Temecula, CA 92590
Phone: (800) 683-1657 or
(909) 699-9657
Fax: (909) 695-5679
BBS: (909) 964-6891
E-Mail: CIS: 74774,2240
CIS Forum: GO SWARE
Announcing BSS Business Systems Software

Business Software Systems,

Inc., of Fairfax Station, VA,
will release BSS Business
Systems, a line of accounting,
distribution, and business
management 32-bit GUI
client/server software based
on Delphi 2.0, Oracle and
InterBase databases, and
Crystal Reports PRO.

DB Manager, General
Ledger, Accounts Payable,
Accounts Receivable, and
Bank Book will be available
through an Early Experience
Program (EEP) in early 1996.

According to the company,
medium to large companies
ready to upgrade their inter-
nal systems to a Windows-
based client/server platform
can select the modules
required.

Source code is available for
developers to modify any of
the modules, and an applica-
tion framework is available to
assist in writing corporate-spe-
cific modules.
The BSS Application
Framework includes a Single
Document Interface (SDI)
menu panel with custom
DBNavigator VCL, registration,
database login, table mainte-
nance, transaction processing,
and setup screens. It also fea-
tures a special development pro-
ject to ease team development.

Price: Standard Edition starts at US$995
per module for a 5-user license; Enterpise
Edition starts at US$5,000 per module for
a 10-user license. BSS Application
FrameWork with TurboPower’s Orpheus
controls 1.0, US$495.

Contact: Business Software Systems,
Inc., P.O. Box 7416, Fairfax Station, VA
22039
Phone: (703) 503-5600
Fax: (703) 503-7901
E-Mail: CIS: 76652,2065
Delphi INFORMANT ▲ 3

FEBRUARY 1996

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi 2 Programming EXplorer
Jeff Duntemann, Jim Mischel,

& Don Taylor
The Coriolis Group

ISBN: 1-883577-72-1
Price: US$44.99,
Canada $62.99
(1000 pages, CD-ROM)
Phone: (800) 410-0192
Add Spell Checking to Delphi Applications with EDSSpell

Eminent Domain Software

of Laredo, TX recently
released version 2.0 of its
EDSSpell Checking
Component for Delphi. With
EDSSpell, developers can
add a spell checking engine
to any Delphi application.
Much like an OpenDialog or
PrintDialog component,
developers can drop a
SpellDlg component onto
their form. They can then
spell check a document with
one line of code:
SpellDlg1.CheckMemo(Memo1);

The EDSSpell component
publishes several properties,
giving developers control
over language, dialog style
(WordPerfect, Microsoft
Word, or WordPro96), and
more. EDSSpell ships with
several languages including
125,000+ word English and
380,000+ word Spanish dic-
tionaries. Other new features
include support for
TurboPower’s Orpheus com-
ponents, and word/unique
word count.

Version 2.0 is a native
Delphi component and
requires no additional DLLs.
There are no run-time royal-
ties for distributing applica-
tions with EDSSpell.
Price: US$99; upgrade from EDSSpell
Version 1.0, US$20.

Contact: Eminent Domain Software,
413 Gale St., Laredo, TX 78041
Phone: (800) 246-5757 or
(210) 729-0123
Fax: (210) 729-0011
E-Mail: Internet: easalgad@icsi.net or
CIS: 70600,3451
Stylus Announces Telephony Support For Delphi

Stylus Innovation, Inc., of

Cambridge, MA has announced
the release of its telephony
toolkit, Visual Voice for Delphi,
which allows Delphi developers
to add telephony features to
their applications.

Visual Voice is a suite of
VBX controls and a graphical
workbench for creating tele-
phony and fax applications
that include interactive voice
response (e.g. touch-tone
banking), fax-on-demand, and
voice mail. Typical business
systems built with Visual Voice
include 24-hour customer
order services, benefits enroll-
ment hotlines, and brochure
fax-on-demand systems.

Visual Voice also features
modules for text-to-speech and
voice recognition support. In
addition, it provides interfaces
to the following functions:
answering inbound calls, plac-
ing outbound calls, prompting
for touch-tone input when calls
are established, playing and
recording voice files, sending
and receiving faxes, and inte-
grating with a PBX to perform
call control functions such as
transferring and conferencing.
Included in the Visual Voice

toolkit is the Voice Workbench,
a graphical tool to define the
telephony components of an
application and generate the
corresponding application logic.
The Workbench is used to cre-
ate and maintain all telephony
objects, including voice
prompts, menus, and files.

Stylus’ 32-bit OCX version of
Visual Voice is currently in beta.

Price: Visual Voice for Windows 3.x
begins at US$495. There are no run-time
fees required.

Contact: Stylus Innovation, Inc., One
Kendall Square, Building 300, Cambridge,
MA 02139
Phone: (617) 621-9545
Fax: (617) 621-7862
E-Mail: Internet: info@stylus.com
Web Site: http://www.stylus.com
Delphi INFORMANT ▲ 4

FEBRUARY 1996

News
L I N E

February 1996

VCL Contest for
Delphi 2.0 Developers

Sams Publishing and Borland Press
are holding a VCL competition for

all Delphi 2.0 developers. The
contest categories include:

Interface Components,
Internet/Communications,

Database, Multimedia, and more.
The top five winning entries in

each category will receive US$100
and a copy of Sams’ Delphi 2.0
Developer’s Guide, 2nd edition.

The grand prize is US$1,000
and a copy of Delphi 2.0

Developer’s Guide, 2nd edition.
The deadline for all entries is

February 19, 1996. For complete
contest rules, visit Borland Online

at http://www.borland.com.

Delphi Informant Reader’s
Choice Deadline Extended
The deadline for submitting bal-

lots for the 1996 Delphi Informant
Reader’s Choice Awards has

been extended to February 20,
1996. To vote, complete and sub-

mit the ballot included with this
issue. Readers may also vote
online using VOTE_DI.TX, an
electronic version of the ballot
available from our Web site
(http://www.informant.com)

or CompuServe forum
(GO ICGFORUM).
Borland Ships Three Versions of Delphi 2.0

Scotts Valley, CA — Borland

International has released
three versions of its 32-bit
Delphi application develop-
ment tool for Windows 95
and Windows NT: Delphi
2.0 Desktop, Delphi 2.0
Developer, and Delphi 2.0
Client/Server.

Delphi 2.0 Desktop fea-
tures a 32-bit optimizing
native code compiler, over 85
standard components, a suite
of Windows 95 common
controls, data-aware compo-
nents to build local database
applications, and data mod-
ules for centralized data
integrity and business rules.

It also has an object-orient-
ed, extensible component
architecture, visual inheritance
and form linking, Windows
95 support for OLE automa-
tion and OCXes, as well as
32-bit development with Win
API support, a Database
Explorer to create and modify
tables, aliases and indices, and
an object repository to store
and reuse objects and forms.
Version 2.0 can create
reusable DLLs and stand-
alone EXEs, and can still be
used for 16-bit Windows 3.1
development. It ships with
Object Pascal documentation.
Delphi 2.0 Developer
includes all the features
found in the Delphi 2.0
Desktop edition, plus a
scaleable data dictionary,
Multi Object Grid, approxi-
mately 100 VCL compo-
nents, advanced data aware
components, a 32-bit version
of ReportSmith, Borland
Database Engine low-level
API support and Help files,
ODBC support, a single-user
Local InterBase Server, and
InstallShield Express.

Designed for developers, it
also has additional experts
and templates, Winsight32
for monitoring Windows
messaging, expanded Open
Tools API, team development
interface (requires Intersolv’s
PVCS), and the Visual
Component Library source
code and printed reference.

Delphi 2.0 Client/Server
includes all the features of
the Delphi 2.0 Desktop and
Developer editions, plus 32-
bit SQL Link native drivers
with unlimited deployment
license, SQL Database
Explorer, SQL Monitor, a 2-
user InterBase NT license,
new 16-bit Sybase System 10
and DB2 Native Drivers, a
Data Pump Expert,
Integrated Intersolv PVCS
Version Control,
ReportSmith SQL edition,
Visual Query Builder, and
cached updates. This
client/server edition also
includes integration with
CASE tools, and client/serv-
er documentation.

Pricing for these three versions
of Delphi 2.0 are: Delphi 2.0
Desktop US$499.95; Delphi
2.0 Developer US$799.95; and
Delphi 2.0 Client/Server
US$1999.95. For more details,
see Richard Wagner’s article
“Delphi 2.0” beginning on
page 14. Additional product
information is available from
Borland by calling (800) 331-
0877 or (408) 461-9195, or by
visiting their Web site at
http://www.borland.com.
Borland Announces
Agreement with Rios
Corporation
Scotts Valley, CA — Borland
International Inc. has signed an
agreement with RIOS
Corporation for the marketing
and distribution rights of
InterBase for UNIX in Japan.
RIOS, the largest system inte-
grator in Japan, chose InterBase
because of its ability to scale in
a client/server environment,
and its support of UNIX and
Windows-based applications.

According to the RIOS
Corporation, they have been
selling InterBase in Japan since
1992. In addition, RIOS has
adopted Delphi and InterBase
as their standard development
tools for custom applications.

The RIOS Corporation has
already begun marketing
InterBase. Currently, InterBase
4.0 for Sun OS and HP-UX
platforms is shipping.
InterBase 4.0 for Solaris and
AIX is slated for release in
Japan in early 1996.
Delphi Informant on the Web

Elk Grove, CA —

Informant
Communications
Group, Inc. (ICG),
publisher of Delphi
Informant, Paradox
Informant, and
Oracle Informant
magazines, has
launched an
Internet Web site at
http://www.infor-
mant.com. From
the initial Web
page, users can
choose from several
sections including magazines,
catalogs, CDs, files to down-
load, advertising, ICG news,
ICG apparel, and general
information.

ICG also supports a
CompuServe forum (GO
ICGFORUM), and an FTP
site (ftp.informant.com).

Companies and user groups
interested in linking their Web
site to the ICG Web site should
contact Carol Boosembark at
72702.1274@compuserve.com,
or call (916) 686-6610
ext. 16.
Delphi INFORMANT ▲ 5

FEBRUARY 1996

News
L I N E

February 1996

Borland Developers
Conference Heads to

Anaheim
Borland International Inc. has

announced that the 7th Annual
Borland Developers Conference will

be held July 27-31, 1996 at the
Anaheim Convention Center
in Anaheim, CA. Conference
speakers will be announced in

March 1996. For more
information contact Borland

at (408) 431-1000 or
http://www.borland.com.

Borland Online Set to
Focus on Products

Borland International’s World Wide
Web site, Borland Online, will be

redesigned for 1996. According to
Borland, they are changing their

Web site to better serve application
developers, moving from a corpo-
rate-centric to a product-centric

focus. From the home page, devel-
opers can select a product and be
directed to Web pages specific to
that product. Borland Online will

also continue to upgrade and
increase the links from its Java

World page, and increase content
associated with the Legal Toolbox.
Borland Endorses JavaScript

Mountain View, CA —

Borland International Inc. is
one of 28 companies to
endorse JavaScript, released
by Sun Microsystems, Inc.
JavaScript is an open, cross-
platform object scripting lan-
guage for creating applica-
tions on enterprise networks
and the Internet.

The JavaScript language
complements Java, Sun’s
object-oriented, cross-plat-
form programming language.

In addition, America
Online, Inc., Apple
Computer, Inc., Architext
Software, Attachmate
Corporation, AT&T, Brio
Technology, Inc., Computer
Associates, Inc., Digital
Equipment Corporation,
Hewlett-Packard Company,
Iconovex Corporation,
Illustra Information
Technologies, Inc., Informix
Software, Inc., Intuit, Inc.,
Macromedia, Metrowerks,
Inc., Novell, Inc., Oracle
Corp., Paper Software, Inc.,
Precept Software, Inc., RAD
Technologies, Inc., The Santa
Cruz Operation, Inc., Silicon
Graphics, Inc., Spider
Technologies, Sybase, Inc.,
Toshiba Corp., Verity, Inc.,
and Vermeer Technologies,
Inc., have endorsed
JavaScript as an open stan-
dard object scripting lan-
guage, and intend to provide
it in future products.

JavaScript is an object
scripting language designed
for creating online applica-
tions that link objects and
resources on both clients and
servers. While Java is used by
programmers to create new
objects and applets, JavaScript
is designed for use by HTML
page authors and enterprise
application developers to
script the behavior of objects
running on either the client
or the server. JavaScript is
designed specifically for the
Internet and creating net-
work-centric applications. It
also integrates with Java and
HTML.

Java is available to developers
free of charge. The Java
Compiler and Java Developer’s
Kit as well as the HotJava
browser and related documen-
tation are available from Sun’s
Web site at http://java.sun.com.
In addition, the Java source
code can be licensed for a fee.
Details on licensing are also
available via the java.sun.com
Web page.

To date, Sun has licensed
Java to a number of leading
technology companies,
including Borland,
Macromedia, Mitsubishi,
Netscape, Oracle, Silicon
Graphics, Spyglass, and
Toshiba. Sun’s Workshop for
Java Toolkit is scheduled for
release in Spring 1996.
Netscape and Sun plan to
propose JavaScript to the W3
Consortium (W3C) and the
Internet Engineering Task
Force (IETF) as an open
Internet scripting language
standard. JavaScript will be an
open, freely licensed proposed
standard available to the
entire Internet community.
Existing Sun Java licensees
will receive a license to
JavaScript.

In addition, Sun and
Netscape intend to make a
source code reference imple-
mentation of JavaScript avail-
able for royalty-free licensing.

Additional information on
Sun Microsystems is available
on the Internet at http://www.-
sun.com or, for Java informa-
tion, http://java.sun.com. For
more information on Netscape
products, visit http://home.-
netscape.com, send an e-mail
to info@netscape.com, or call
(415) 528-2555.
Database & Client/Server World Set
for Boston in March
Andover, MA — Scheduled
for March 26-28, 1996,
Database and Client/Server
World will feature over 800
exhibits at the Hynes
Convention Center in
Boston, MA.

With over 25,000 MIS pro-
fessionals expected to attend,
Database & Client/Server
World is an exposition of
databases, tools, warehousing,
and application development
products.
The event features database

and client/server experts Dr E.F.
Codd, Jeff Tash, Richard
Finkelstein, Chris Date, Ronald
G. Ross, Shaku Atre, Herb
Edelstein, Ken Orr, Paul
Harmon, Roger Burlton, Larry
R. DeBoever, Max Dolgicer,
Richard Winter, Ken Lownie,
Aaron Zornes, Michael
Stonebraker, and Thomas
Lipscomb.

In addition, Database &
Client/Server World will fea-
ture nine conferences:
Client/Server Tools and
Application Development,
Data Warehouse and
Repositories, Systems
Management for the
Client/Server Environment,
Parallel Databases and
VLDBs, Data and Object
Modeling, Object-Oriented
Technologies, Middleware,
Groupware Application
Development, and Multi-Tier
Architectures and Application
Partitioning.

For more information visit
DCI’s Web site at
http://www.dciexpo.com.
Delphi INFORMANT ▲ 6

FEBRUARY 1996

On the Cover
Delphi 2.0

By Richard Wagner

Delphi 2.0
The Serendipitous Tool Makes Its 32-Bit Debut
Serendipity. This is the word that came to mind when I first saw the latest
field test of Delphi 2.0. The enhancements from earlier field tests were
both wonderful and unexpected. If you recall, in the October 1995 Delphi

Informant, we previewed Delphi 2.0 during its initial beta release. At that time,
it already sported some amazing enhancements over the 16-bit version of the
product, including: a 32-bit optimizing compiler, OCX support, Windows 95 UI
components, multithreading support, a new 32-bit database engine, new data
types, closer coupling with C++, and an enhanced IDE.

The Delphi 2.0 R&D team was obviously not content with the status quo. In subsequent
builds, there has been a steady influx of major new features that, when combined, make Delphi
2.0 one of the most extensive version upgrades I’ve ever seen. This article will focus on many of
the new features that have been added to the 32-bit product since our October survey.
Figure 1: Windows Control Panel uses a ListView to present
options to the user.
New UI Controls
In addition to the eight
Windows 95 UI components
we discussed in October,
there are three new ones:
TListView, THotKey, and
TStatusBar. First, the
TListView control will enable
you to use one of the funda-
mental Win95 user interface
elements in your applica-
tions. Anywhere you go in
Windows 95 — such as My
Computer, Control Panel, or
Windows Explorer — you

work with a ListView control (see Figure 1). It’s an intuitive way of displaying list infor-
mation in a variety of styles (Large Icon, Small Icon, List, or Details).

Using a TListView component, you can use this method of presentation in your Delphi appli-
cations as well. For example, Figure 2 shows a sample application called Resource Explorer
that ships with the current Delphi 2.0 build. Using TTreeView and TListView components, it
effectively presents resource data in a metaphor similar to the Windows Explorer. Given the
Delphi INFORMANT ▲ 7

Figure 2: This sample Delphi application employs TreeView and
ListView components.

On the Cover

Figure 3: A sample application executing queries in different threads.
success of the Windows 95 user interface, you’ll probably
want to incorporate TreeView and ListView components into
your application UIs.

The TStatusBar component provides a simple way for
developers to give their applications a standard Windows
95 status bar, while the THotKey component allows the
user to quickly perform a specified action using a combina-
tion of keys (such as CC). All the Windows 95 UI com-
ponents available with Delphi 2.0 are briefly described in
the sidebar on page 12.

Multithreading
New UI controls may change the way you present informa-
tion to the user, but a new feature called multithreading
could fundamentally change your approach to application
development.

Using Delphi 2.0, you can create threaded applications. It
will be important for developers to resist the urge of going
“thread crazy” and create multiple threads in even the tiniest
of applications. With this caveat in mind, when multi-
threading is used wisely, it can be extremely powerful, and is
perhaps the most convincing factor for developing Win32
applications instead of creating programs for the Windows
3.1 16-bit environment.

In our October preview, we had a high-level discussion on
Delphi 2.0’s multithreading support. In this installment, let’s
take a closer, interactive look at multithreading by building a
basic two-thread application. (Note that documentation for
multithreading was minimal at press time.)

Suppose you want to execute two queries simultaneously in an
application, but would like to prioritize the queries. To do
this, you could place the queries into separate threads. Figure 3
shows the UI for this example. The priority of the two threads
is dependent on the position of the TrackBars shown on the
left of the form, and the results of the queries are shown in the
two TDBGrid controls.
FEBRUARY 1996
Diving inside the code, we must first separate the two queries
into different routines that we’ll call Query1Thread and
Query2Thread. The first query is executed when
Query1Thread is called:

function Query1Thread(parms: pointer) : LongInt; far;
begin

Form1.LongQuery.Open;
end;

Then, the second query is executed when Query2Thread is
called:

function Query2Thread(parms: pointer) : LongInt; far;
begin

Form1.ShortQuery.Open;
end;

Now we can add the multithreading code. The Button2Click
procedure uses the createThread method to create threads for
the queries and then set a thread’s priority based on the posi-
tion of its associated TrackBar (note that the T3 and T4 vari-
ables are of type THandle):

procedure TForm1.Button2Click(Sender: TObject);
var

ThreadID : dWord;
begin

T3 := createThread(nil,0,@Query1Thread,nil,0,threadID);
setThreadPriority(T3,FirstTrackBar.Position);
T4 := createThread(nil,0,@Query2Thread,nil,0,threadID);
setThreadPriority(T4,SecondTrackBar.Position);

end;

Many articles on multithreading (especially on how to best
employ it) are surely in the works. But even when running
this rudimentary demonstration, you can visibly see the
results of what threading can do for you.

Database Enhancements
Delphi 2.0 now provides several new enhancements that data-
base application developers will definitely appreciate. These
include cached updates, TField lookup fields, table filters, and
two enhanced data controls.

Cached Updates. An important part of any client/server
application is how the client works with the SQL server to
process data. In Delphi 1.0, every client data event is individ-
Delphi INFORMANT ▲ 8

On the Cover

Figure 6:
The DBGrid
component’s
Columns Editor
allows you to
customize the
look of each
column in the
grid.
ually sent to the database as a separate SQL transaction. This
process is known as navigational updating.

Delphi 2.0 continues to support navigational updates, but adds
a new transaction mechanism called cached updates. Rather
than sending each data update as a separate SQL transaction,
cached updates gather multiple client transactions and send
them in a batch to the server within a single SQL transaction.

Cached updates have several uses, but can be particularly effec-
tive in situations where network traffic and record contentions
are major concerns. However, keep in mind that both naviga-
tional and cached update models have advantages and disad-
vantages. Therefore, the developer is responsible for employing
the proper transaction method within a given context. Not
only do cached updates work on SQL databases, but they also
work on local databases such as Paradox and dBASE.

To enable cached updates, set the CachedUpdates property of
a TTable object to True. Then, any updates made by the user
will be displayed on screen, but will not actually be sent to
the database until the TTable method ApplyUpdates is execut-
ed. You can cancel the current record’s update using the
CancelCurrentUpdate method or cancel all updates within the
current transaction using CancelUpdates.

Lookup Support for TField. In addition to providing simply cal-
culated field support, TField objects in Delphi 2.0 also furnish
support for lookup fields. This capability will allow you to speci-
fy lookup fields to receive a value from another table. Lookup
fields are created similarly to calculated fields using the Fields edi-
tor. A New Field dialog box is displayed in which you can specify
its field type (see Figure 4). You then set four properties —
LookupTable, LookupMasterFields, LookupDetailFields, and
LookupResultField — for the read-only lookup field. Figure 5
shows a lookup field in a TDBGrid.

Table Filters. In developing database applications, developers
periodically want to use both queries and filters to display a
limited set of data to the user. To use filters in Delphi 1.0,
you must use a third-party component or create your own
because TTable does not provide built-in filtering.
FEBRUARY 1996

Figure 4:
The New Field
dialog box.

Figure 5:
A lookup
field is
shown in
the
enhanced
TDBGrid
component.
Delphi 2.0 makes filtering much easier by adding filter support
to the basic TTable component. By setting the TTable’s Filtered
property to True, each record is evaluated when it’s retrieved by
the data set. You can configure a filter to “block out” all records
that do not match your criteria by placing the data filter in the
OnFilterRecord event handler for the TTable object.

For example, suppose you want to filter out all records in a
Customer table for people not living in Massachusetts. To do
this, you would write the following filter:

procedure TForm1.CustomerTblFilterRecord(
DataSet: TDataSet; var Accept: Boolean);

begin
Accept := DataSet['State'] <> 'MA';

end;

Enhanced Data Controls. Data presentation just got much
easier in Delphi 2.0 with two new/enhanced data controls: a
much improved TDBGrid component and a new
TDBCtrlGrid component. Both of these allow you to simulta-
neously display multiple records, but in different ways.

Many people consider the TDBGrid component one of the
weaker components in Delphi 1.0. You have little control
over the columns and cannot easily create lookup field sup-
port within the grid itself. These deficiencies alone probably
sold many third-party replacements for TDBGrid. Conversely,
the new TDBGrid has many improvements, the two most
important of which include a Columns Editor that allows you
to set an array of properties for a given column (see Figure 6),
and the ability to display TField lookups (see Figure 7).
Delphi INFORMANT ▲ 9

Figure 7:
New and
improved
TDBGrid
supports
combination
boxes and
other data
controls.

On the Cover
The TDBCtrlGrid is a powerful new component for display-
ing data. Like TDBGrid, TDBCtrlGrid allows you to display
multiple records of a table, but in a more flexible manner.
Not only can you display any data aware control in it, but
you can also specify how many rows and columns of records
to display. If you have ever used Paradox for Windows, you
will find that the TDBCtrlGrid is essentially the equivalent of
Paradox’s multi-record object. Figure 8 shows an example of a
TDBCtrlGrid.
Figure 8:
The new
DBCtrlGrid
component
gives you
greater
flexibility in
presenting
multiple
records of
data.
New IDE Features
The development environment of Delphi 2.0 continues to
mature with the addition of visual form inheritance, data
modules, visual form linking, and an Object Repository.

Visual Form Inheritance. One of the biggest shortfalls of Delphi
1.0 was the inability to truly subclass TForm objects. Delphi 2.0
answers this deficiency with visual form inheritance. This func-
tionality allows you to create descendant forms from an original
base form, all without writing any code. Unlike Delphi 1.0’s ver-
sion of “form templates” (that were really just copies of your
favorite forms), Delphi 2.0 allows you to create true “abstract”
forms within and across projects. When you update an ancestor
form, all its descendants are updated at the same time. You can
even view this simultaneous update on screen.

To illustrate, we’ll look at a demonstration application called
Gdsdemo. It’s an example of presenting the same data using
both a TDBGrid and a TDBCtrlGrid. However, it also shows
the power of inheritance.

Gdsdemo uses a base form called GDSStdForm (see Figure 9)
that has the company logo header used by two forms. A
descendant form of GDSStdForm, called StdDataForm (also
shown in Figure 9), adds filtering controls onto the base form.

Neither of these forms are ever seen by the user — they are
simply abstract objects being used by their children:
GridViewForm and RecGridForm (again, see Figure 9). Both of
these forms inherit the properties, events, and methods from
their two ancestor forms. Therefore, if you change the bitmap
of GDSStdForm, all other forms in the application would be
FEBRUARY 1996
updated. Additionally, if you change the event handler for the
Find Next button on the StdDataForm, the associated handler
in GridViewForm and RecGridForm will be updated as well.

The importance of visual form inheritance is clear for object-
oriented programmers. In Delphi 2.0, you can extend the
OOP boundary to now include forms, as well as data mod-
ules (which we’ll discuss below).

Data Modules and Visual Form Linking. When developing
multi-form database applications in Delphi 1.0, I find the form-
specific nature of data access components to be frustrating.
Because of this limitation, if you use a table across 16 different
forms, you must place a TTable component on each of the 16
forms if you linked that table to a UI object. Additionally, if you
need to synchronize the data across multiple forms, you are
forced to write the code to perform the synchronization.

Thankfully, Delphi 2.0 added data modules to combat this
unnecessary chore. A data module serves as a container for non-
visual database components (see Figure 10). Using a data mod-
ule, you can manage your database access code from a central-
ized facility. You can also keep all your database logic in this sin-
gle location rather than spread throughout the application.

A data module is form-like, so you can work with data mod-
ules quite similarly as you do with Delphi forms. However, a
data module does not have a UI and thus will never appear to
the end user of your application.

Having a centralized data house is possible through visual
form linking. With this functionality, you can link a data
component on one form to a data aware component on
another form or data module. Delphi 2.0 links forms and
data modules by linking their associated unit files. Therefore,
once you declare a form’s unit in the uses clause of another
form, you can access any of its data components. Figure 11
shows the dot notation reference in the Object Inspector.

Object Repository. Delphi 2.0 uses the Object Repository as
an organizing tool to manage form objects, data modules,
project experts, and project templates. The Object Repository
is really an enhanced version of Delphi 1.0’s Gallery. After
adding an object to this facility, you can inherit, reference, or
copy the object in future applications. You’ll notice the con-
tents of the Object Repository are displayed when you select
the File | New from Delphi’s menu (see Figure 12). In multi-
developer environments, you can maintain a single network-
based Object Repository and reference it from every develop-
er workstation.

Noteworthy Changes
There are many miscellaneous changes that are noteworthy
(including, but not limited to):
• The File | Use Unit command adds the select unit to the

uses clause of the current unit file (or associated unit file
of the active form).
Delphi INFORMANT ▲ 10

Figure 9: Delphi 2.0 features visual form inheritance. In this example, the form StdDataForm (second from the top) inherits all the proper-
ties and behavior of GDSStdForm. In turn, GridViewForm and RecGridForm (at the bottom of the figure) inherit from StdDataForm.

➤
➤

➤

On the Cover
• A new comment
symbol (//). In
addition to pre-
vious comment
delimiters ({})
and ((* *)),
all words to the
right of // are
considered com-
ments.

• The Thread
Status window will allow you to monitor threads run-
ning in your application.

• TSession is now a component on the Component Palette.
• Non-visual components are now easier to distinguish. You

can select the Show Component Captions option to see their
labels in design mode.

• Delphi 2.0 supports unit aliasing. You can use an alias to
refer to another unit file.

• The Fields editor now provides drag-and-drop support. You
can drag a field from the Fields editor onto any form and a

Figure 10: Delphi 2.0 supports centralized,
reusable holders for nonvisual database
components called data modules. They’re
specialized Delphi forms that can be modi-
fied just as other forms.
FEBRUARY 1996
field object will automatically be
created and set to that field. This
enhancement will make form
creation much easier.

• The Client/Server edition of
Delphi 2.0 will provide built-in
PVCS version control support.
[For a complete description of
the three new editions of
Delphi 2.0 that are available,
see the news item “Borland
Ships Three Versions of
Delphi32” on page 5.]

Conclusion
No matter how you use Delphi
2.0, it’s proving to be a convinc-
ing upgrade. Database developers
will be flooded with a host of
new database tools, components,
data modules, and database engine enhancements. General

Figure 11: The new visual
form linking feature allows
you to access data controls
in other forms using dot
notation.
Delphi INFORMANT ▲ 11

FEBRUARY 1996

On the Cover

Windows 95 Common UI Controls

l

Figure 12: An enhanced version of the Delphi 1.0 Gallery, the New
Item dialog box is displayed when you select File | New from the
Delphi 2.0 menu.
and OOP programmers will definitely welcome its closer
C++ integration, optimizing backend compiler, ability to
create OLE servers, and multithreading support. And every-
one will enjoy a more sophisticated IDE with its visual form
inheritance, Object Repository, and other new features.

As much as I love Delphi 1.0, I recognize that it has some
missing pieces. Quite serendipitously, many of the gaps in
Delphi 1.0 have been filled in its 32-bit successor. ∆

This article is based on a prerelease version of Delphi 2.0 and
may describe features that differ or are entirely absent from the
shipping version.
Delphi 2.0 provides new Windows 95 common UI controls on its
Component Palette. Figure A illustrates the use of several of these
controls.

TTabControl. The TabControl allows you to create a set of tabs. If
you want the tabs associated with “pages,” then use the PageControl
component.

TPageControl. PageControl is used to create Win95-style tabbed
dialog boxes. With this component, you can add pages more easily
than with its Delphi 1.0 predecessor (TabbedNotebook) by right-
clicking and choosing New Page from the menu. Another ease-of-
use feature is the ability to activate a page by clicking its tab with
your mouse rather than having to change the ActivePage property
in the Object Inspector.

TTreeView

TProgressBar

TTrackBar

TRichEdit

TPageContro
TTreeView. TreeView is a Win95 version of the Outline component in
Delphi 1.0. The TreeView component is used quite often in Windows
95. Look at the Windows Explorer or Delphi 2.0’s Database Explorer
(see Figure 7 earlier in the article) for other examples of a TreeView.

TListView. The ListView control encapsulates the UI capabilities
exemplified by Windows 95 Control Panel.

TTrackBar. The TrackBar is a “slider like” component used to adjust
values that fall within a continuous range.

TProgressBar. The ProgressBar is a Win95 “percentage meter” that
enables you to show the percentage remaining in a lengthy process.

THeaderControl. Enhancing the capabilities of the 16-bit Header com-
ponent, the HeaderControl is used to display headings above columnar
data. You can divide the header into multiple sections when you need
to place a heading above multiple columns of text or numbers.

TStatusBar. The StatusBar allows you to add standard Windows 95
status bars to your applications.

TRichEdit. The RichEdit box goes beyond the basic editing capabili-
ties of the text box to support character properties (font, color, etc.)
and paragraph properties (alignment, tabs, numbering, etc.).

TUpDown. Used in conjunction with an edit box, the UpDown con-
trol is typically used to create a circular loop of input values.

THotKey. The HotKey component performs a specified action using a
combination of keys (e.g. CC).
Delphi INFORMANT ▲ 12

Richard Wagner is a Chief Technical Officer for Acadia Software (formerly IT
Solutions/Boston) located in the Boston, MA area. He is author of several Paradox,
Windows, and CompuServe/Internet books, and is also a member of Team Borland on
CompuServe. Richard can be reached on CompuServe at 71333,2031 or via the
Internet at rwagner@cis.compuserve.com.

FEBRUARY 1996

DBOutline
Using TOutline to Manage Hierarchical Data

Informant Spotlight
Delphi 1.0 / Object Pascal

By Jeff Chant
D elphi’s TOutline component is a versatile tool for viewing hierarchical-
ly-organized data. One tremendous example of its power is its ability
to manipulate the hierarchy of data through drag-and-drop. TOutline

can even be used to navigate a DataSet and update physical data records.

Most developers will appreciate the value of this feature when confronting a table that refers
to itself for a parent record. Such self-referencing tables are numerous in the business world:
employee files referring to themselves for a supervisor; address masters referring to themselves
for a parent address; and business segment tables referring to themselves for a parent segment.
These recursive relationships are often many levels deep, and the deeper the nesting becomes
the more difficult it is for end-users to manage them with normal grid- or form-based inter-
faces. Solving this problem demands a tool capable of editing hierarchically-related data. The
TOutline component — a hierarchy-oriented tool — fulfills this requirement perfectly.
Figure 1 shows a sample application that accesses a
company’s employee data. Employees are nested
under their respective supervisors. Clicking on an
outline node (an employee) causes the TDBEdit
fields to display the information associated with
that node. For example, if employee 105 is
dragged and dropped on employee 121, then 105
becomes a child node of 121, and the Supervisor
field is updated to reflect the new parent record.
This application can be used to maintain the hier-
archy of any recursive table with only minor
changes to the source code.

Producing the sample application is a multi-
stage process. First, make a self-referencing
table. Next, create the form and add the compo-
nents. Third, construct an algorithm to popu-
late the TOutline component with information
from the self-referencing table. Once the algorithm is complete, implement drag-and-
drop procedures to allow the manipulation of the outline nodes. Finally, establish a sim-
ple procedure to keep the current record of the TTable synchronized with the currently
selected TOutlineNode.

Figure 1: This application provides a hierar-
chic view of a self-referencing employee
table. The user can manipulate the hierarchy
(i.e. the contents of the Supervisor field)
using drag-and-drop.
Delphi INFORMANT ▲ 13

Informant Spotlight
Creating a Self-Referencing Table
Before the DBOutline program can be created, a self-refer-
encing table must be constructed. The example in Figure 1
uses a modified version of the Employee (EMPLOYEE.DB)
table that ships with Delphi. It’s accessed using the default
alias, DBDEMOS. Using the Database Desktop, the modi-
fied table is produced as follows:
• Select File | Working Directory.
• Select the Alias DBDEMOS, then click on OK.
• Select Utilities | Copy.
• In the Copy dialog box, select DBDEMOS for Drive (or Alias).
• Select EMPLOYEE for Copy File From, and enter EMPL2 in To.
• Select OK to perform the copy.

This procedure creates a new Paradox table named EMPL2.DB
that is a replica of the Employee table. To make the table self-
referencing, a new field is added to hold the employee number
of each employee’s supervisor. To add this field and define the
self-referencing relation to the table, proceed as follows:
• Use File | Open | Table to open EMPL2, and select Table |

Restructure Table to modify it.
• Add a field named Supervisor of Type I (i.e. Long Integer).
• Save the changes to the table, then select Table |

Restructure Table to modify it again.
• Select the Table Properties combo box and select Referential

Integrity. Select Define to create a new reference. Create the
reference (see Figure 2), and name the reference EmpSuper.
Figure 2: Using the Database Desktop to create EMPL2.

Figure 3: Creating a calculated
field.
The table is now self-referencing. Note that the new Supervisor
field must be saved before the referential integrity is added. This
is because adding a self-referencing referential integrity name
must be performed with no other modifications to the table.

Creating the Form
The Employee form can be built using the Database Form
Expert. First, create a new project and remove the default
form using the Project Manager. Then select Help | Database

Form Expert and make these selections within the Expert:
FEBRUARY 1996
• Create a simple form.
• Create a form using TTable objects.
• Table Name EMPL2.DB in DBDEMOS.
• Select all Available Fields.
• Vertical field layout.
• Top label placement.
• Generate a main form.

The Database Form Expert has created a new main form for
the project, automatically adding and initializing the TTable
and TDataSource components, as well as a TDBEdit compo-
nent for each field in the table. Our example application,
however, does not require the TDBNavigator component, so
delete it from the form.

In addition, make these changes:
• Change the TScrollBox component’s Align property to

alRight.
• Drag the left border of the TScrollBox component to the

right, leaving the TScrollBox just wide enough to view all
the fields contained within (see Figure 1).

• Add a TSpeedButton component to Panel1, with the glyph
DIRECTRY.BMP (located in \DELPHI\IMAGES\BUT-
TONS) assigned to its Glyph property. This speedbutton
is used to execute the algorithm that loads the table data
into the outline.

• Add a TOutline component to Panel2, and change its
Align property to alClient.

• Add a TTimer component to Panel1. Set its Enabled prop-
erty to False, and its Interval property to 50. The timer
facilitates drag-and-drop, as we’ll see later.

• Set the Enabled property of all TDBEdit fields to False.

When completed, the form should resemble the sample
shown in Figure 1.

Prior to Calculations
The information shown in the sample application includes
the last and first names of the employees. Rather than explic-
itly populating the outline with the string values of both the
LastName and FirstName fields, we’ll use a single calculated
field generated by the Fields editor.
Access the Fields editor by
double-clicking on the form’s
TTable component. Before
defining the calculated field,
add all fields by selecting Add,
then OK. Pick Define to create
the calculated field definition.
Give the calculated field a
Field name of DisplayField,
a Field type of StringField,
and a Size of 45 (see Figure 3).

Using Table1’s OnCalcFields
event, compute the value of
Delphi INFORMANT ▲ 14

Figure 4: The completed form design, showing the event handler
for OnCalcFields.

Figure 5:
Sequence of
procedural
calls used to
populate
the outline.

Informant Spotlight
the calculated field. To access the event’s handler, select the
TTable component, then select the Events page of the
Object Inspector. Double-click the OnCalcFields event to
create the handler and enter the code shown in Figure 4.

At this point, the shell of the sample application is complete.
Now let’s add the extras that make it easy to modify the
application to access other self-referencing tables. The sample
assigns the various field and index names it uses to constant
values, then references the constants throughout the code so
the application can be made to access a different TTable by
performing only three steps:
1) Modify the OnCalcFields event of Table1 to create

DisplayField from the new field(s).
2) Assign the new field/index names to the constants.
3) Change the form’s TDBEdit components to access the new

fields, adding/deleting TDBEdit components as necessary.

The constants are declared just before the implementation
section as:

const
{ Index to sort the table by }
SortIndexName = 'ByName';
{ Field to display after SeekField }
DisplayField = 'DisplayField';
{ The key field of the self-reference }
SeekField = 'EmpNo';
{ The field referencing the key field }
RecursiveField = 'Supervisor';

Although the sample application’s source code accesses
SeekField as a surrogate name to EmpNo, and
RecursiveField as a surrogate to Supervisor, the article will
continue to address these fields by their true names to
ensure clarity.

The next task is to populate the TOutline component from
the data in Table1.
FEBRUARY 1996
Populating the Outline
The example application uses a nested algorithm to popu-
late the outline. To keep the code modular and easy to
maintain, the algorithm is divided among six procedures:
the OnClick event handler of the TSpeedButton component,
and user-defined ParentLoad, ChildLoad, ChildReIterate,
ProcessChildRecord, and AddNodeText. Figure 5 illustrates
how these procedures are nested.
The user-defined procedures are intended to be called only
in sequence and only by the OnClick event of SpeedButton1.
Therefore, declare them in the private section of UNIT1, as
shown in the full source in Listing One on page 19.
Here is the methodology behind the algorithm:
• Use the Add method of TOutline to add a master node

containing the text Employees. Load the EmpNo values
of records in which the Supervisor field is blank into the
outline using the AddChild method, as children of the
master node Employees. These are the top-level parent
records since they are not children of any other records.

• Load the EmpNo values of all remaining records (i.e.
Supervisor is not blank) into the outline, using the
AddChild method, as children of the outline node that
corresponds to Supervisor. Reiterate through the table
until these records have been added.

• Beginning at Table1.First, read each record, search the
outline for the node representing the record using the
GetTextItem method, and replace the node’s Text property
with a string consisting of EmpNo concatenated with
DisplayField. This procedure simply adds the employee’s
name to the node, which formerly contained only the
string equivalent of EmpNo.

The OnClick event of SpeedButton1 first calls the
ParentLoad procedure that loads the key fields of all top-
level parent records. Then OnClick calls the ChildLoad
procedure, which calls ChildReIterate and
ProcessChildRecord to load the key fields of all other
records. Finally, OnClick calls the AddNodeText procedure
that adds the text of calculated field DisplayField to the
appropriate TOutlineNode.

Understanding the Algorithm
To understand the algorithm, it’s important to know how the
TOutline component assigns and maintains the indexes of its
nodes. Each item in a TOutline is contained in a TOutlineNode
object and has a unique Index number corresponding to its posi-
tion in the outline. The first TOutlineNode has an Index of 1,
and the last has an Index equal to the number of items in the
Delphi INFORMANT ▲ 15

FEBRUARY 1996

Informant Spotlight

Figure 6: The Indexes of
the TOutlineNodes are num-
bered sequentially from top
to bottom.

procedure TForm1.ChildLoad(Sender: TObject);
begin

ReIterate := True;
IterateWithoutAdd := False;
while ReIterate do

begin
ReIterate := False;
ChildAdded := False;
while not Table1.eof do

begin
ChildReIterate;
Table1.Next;

end;
Table1.First;
if ReIterate and

not ChildAdded then
IterateWithoutAdd := True;

end;
end;
outline. Index numbering progress-
es sequentially regardless of nested
level (see Figure 6).

Throughout the algorithm,
which TOutlineNode a child
should be added to is indicated
by these indexes. To determine
the Index property of a node that
is not currently selected, the sam-
ple application uses TOutline’s
GetTextItem and GetItem meth-
ods. GetTextItem searches for a
text string in the outline and
returns the Index of the first node
whose Text property is a match.
Figure 7: The ChildLoad procedure adds all records with a non-
zero value in the Supervisor field. The while loop steps through the
table until there are no more records to add to the outline.
GetItem returns the Index of the node at the X, Y coordinates
of the mouse pointer.

In Listing One, notice that the ParentLoad procedure first
creates a master parent node called Employees by calling
TOutline’s Add method. As the first node in the outline,
the master parent node has an Index of 1. All other valid
employee records are nested underneath the Employees
node to facilitate the movement of employee nodes via
drag-and-drop. (By nesting all employees under the
Employee’s node, a child record can be dragged and
dropped on the Employee’s node to raise it to a top-level
parent position. We’ll discuss this more later.)

Once the master parent node is created, ParentLoad simply
loads all top-level parent records (those that have a zero value
in the Supervisor field) into the TOutline component using
the AddChild method. The nodes are added as children to
node Index1, the master parent node.

The next procedure, ChildLoad, drives the addition of all records
that are not top-level parents (those that have a non-zero value in
the Supervisor field) into the TOutline component. ChildLoad
loops through the entire table repeatedly until there are no more
records that must be added to the outline (see Figure 7).

An Iteration
ReIterate is a Boolean variable that, if True, indicates that
there are still employee records to add to the outline. The
value is changed in the ProcessChildRecord procedure if
records are outstanding. If ReIterate is True, ChildLoad will
continue to loop through Table1 attempting to add the out-
standing employee records.

It will probably take several iterations of the table before
all records are successfully added to the outline. An
employee record cannot be added to the outline if its par-
ent has not yet been added. This can happen if the
employee’s parent record is the child of another record,
and the employee’s parent record appears after the employ-
ee record within the indexed table. If the inner while not
eof loop returns with a ReIterate of True, the outer while
ReIterate loop will reprocess the table.

In the next iteration, the parent record of the employee that
could not previously be included may (depending on the level
of nesting) have been added, allowing the employee record to
be attached as its child. This repeated looping causes the out-
line’s population to become slower as the nesting becomes
deeper and more numerous. However, the repeated looping
does have an escape clause (which we’ll discuss later).

Child’s Play
The ChildReIterate procedure that is called by ChildLoad has
a simple function. It examines all non-top-level records
(Supervisor <> 0) and, if they do not exist in the outline,
calls procedure ProcessChildRecord. It uses the GetTextItem
method of TOutline to determine if the record has previously
been added. For example, if GetTextItem returns an Index of
0, a TOutlineNode containing the text does not exist, and the
record should be processed by ProcessChildRecord.

ProcessChildRecord must determine if the parent record of the
employee exists in the outline (see Figure 8). GetTextItem
searches for and returns the Index of a node containing the
string equivalent of the record’s Supervisor field. If the Index
returned is not zero, it adds the employee, using the
AddChild method, to the parent record’s TOutlineNode via
the returned Index. If the Index returned is 0, it assigns a
value of True to ReIterate.

Within ProcessChildRecord is the escape clause to the repeat-
ing loop — if the previous loop added no new records to
the outline (i.e. Boolean variable, IterateWithoutAdd, is
True), the current loop will add any remaining records as
children of node Index 0, indicating the parent records
could not be found. Orphaned records will never occur if
the self-referencing referential integrity name was added to
Delphi INFORMANT ▲ 16

Informant Spotlight

procedure TForm1.ProcessChildRecord;
var

NodeIndex: integer;
begin

with Table1 do
begin

NodeIndex := Outline1.GetTextItem(
FieldByName(RecursiveField).AsString);

if NodeIndex = 0 then
begin

ReIterate := True;
if IterateWithoutAdd = True then

begin
Outline1.AddChild(0,

FieldByName(SeekField).AsString);
end;

end
else

begin
ChildAdded := True;
Outline1.AddChild(NodeIndex,

FieldByName(SeekField).AsString);
end;

end;
end;

Figure 8: The ProcessChildRecord procedure determines if the par-
ent record is in the outline.
the Paradox table as instructed earlier. The code is added
simply as a safety precaution. For instance, if the applica-
tion is modified to access a table with no recursive relation
defined (or a table unable to accept or enforce one), the
handling of orphaned records will prevent the algorithm
from entering an endless loop.

One More Loop
As a final step, AddNodeText loops once more through the
table, locating the TOutlineNode that corresponds to each
record, and replacing the node’s text:

(EmpNo) with EmpNo + ' ' + DisplayField

This step can’t be performed as the nodes are added because of
the way the GetTextItem method operates. The text of the node
must exactly match the text being searched to find a match.

If nodes were added with:

EmpNo + ' ' + DisplayField

then before seeking a node corresponding to the Supervisor
field of the current record, the record pointer would have to
be moved to the record whose EmpNo field contained the
value of Supervisor. Here, the DisplayField value would have
to be retrieved for use in the search. This would create at least
one, and usually several, SetBookMark/FindKey/GotoBookMark
combinations for each child record — a much greater perfor-
mance hit than one loop through the table.

Drag and Drop
With the TOutline populated, the task remains to enable
drag-and-drop of the TOutlineNodes. To accomplish this, use
FEBRUARY 1996
the OnMouseMove, OnDragOver, and OnDragDrop events of
the TOutline component. Note that OnMouseMove triggers
the dragging state rather than the OnMouseDown event that is
generally used in Borland’s drag-and-drop examples. The rea-
son for this will become clear.

To enable drag-and-drop, enter this code into the MouseMove
event handler:

with Outline1 do
if not Dragging then

if (Shift = [ssLeft]) then
BeginDrag(False);

Running the application with this code, however, highlights
a problem: a node can only be dragged and dropped onto
another node that is currently visible in the outline. It can’t
be dropped on a node that has scrolled off the viewing area.
If drag mode is not enabled, dragging from the outline to an
area above the control makes the outline scroll downward.
Likewise, dragging to an area below the control scrolls
upward. However, after drag mode is enabled, this feature of
the TOutline control is disabled.

This problem is solved by using the OnMouseMove event to
trigger BeginDrag. Code can be added to the MouseMove
event handler that will note, if the outline is currently drag-
ging, whether the mouse pointer has moved beyond the
outline’s borders. If so, the outline will be scrolled in the
appropriate direction. However, the OnMouseMove event
shouldn’t actually cause the scrolling, or scrolling will stop
when the mouse ceases moving. Instead, the OnMouseMove
event should enable the TTimer component, and TTimer’s
OnTimer event will handle the scrolling. The completed
MouseMove handler is shown in Figure 9.

The X and Y coordinates of the mouse pointer are com-
pared to the TOutline top and left coordinates (0) and
height to determine if the TOutline should be scrolled and,
if so, in which direction. The Boolean variables ScrollUp,
ScrollDown, ScrollLeft, and ScrollRight have their values set
depending on the scrolling direction. These variables
instruct the TTimer component after it is enabled. Note
that TTimer is disabled if the outline should not be
scrolled. This stops TTimer from continuing to scroll after
the mouse has been moved back within the borders of the
TOutline.

The OnTimer event of TTimer evaluates the current dragging
state and the Boolean variables (ScrollUp, ScrollDown,
ScrollLeft, and ScrollRight), and it sends the appropriate mes-
sage to the Outline control’s window. If TOutline is not in a
dragging state, TTimer is disabled. This ensures that the timer
is stopped if the left button is released while the mouse is still
outside the boundaries of the TOutline (see Figure 10).

WM_VSCROLL and WM_HSCROLL are the messages
sent to a window when its vertical and horizontal scroll
Delphi INFORMANT ▲ 17

procedure TForm1.Timer1Timer(Sender: TObject);
begin

with Outline1 do
begin

if Dragging then
begin

if ScrollUp then
SendMessage(Handle, WM_VSCROLL, SB_LINEUP,

SB_THUMBTRACK)
else if ScrollDown then

SendMessage(Handle, WM_VSCROLL, SB_LINEDOWN,
SB_THUMBTRACK);

if ScrollLeft then
SendMessage(Handle, WM_HSCROLL, SB_LINEUP,

SB_THUMBTRACK)
else if ScrollRight then

SendMessage(Handle, WM_HSCROLL, SB_LINEDOWN,
SB_THUMBTRACK);

end
else

Timer1.Enabled := False;
end;

end;

with Outline1 do
begin

if not Dragging then
begin

if (Shift = [ssLeft]) then
BeginDrag(False);

end
else

begin
if (Y < 0) or (Y > Height) or

(X < 0) or (X > Height) then
begin

ScrollUp := False;
ScrollDown := False;
ScrollLeft := False;
ScrollRight := False;
if Y < 0 then

ScrollUp := True
else if Y > Height then

ScrollDown := True;
if X < 0 then

ScrollLeft := True
else if X > Height then

ScrollRight :=True;
Timer1.Enabled := True;

end
else

Timer1.Enabled := False;
end;

end;

Figure 9 (Top): The completed MouseMove handler.
Figure 10 (Bottom): Setting boundaries with the Timer procedure.

Informant Spotlight
bars (respectively) are clicked. SB_LINEUP and
SB_LINEDOWN indicate the direction of scroll (with UP
as left and DOWN as right on the horizontal bar).
SB_THUMBTRACK indicates that the scroll box should
move to the corresponding position. When many records
with extensive scrolling are involved, it might be worth-
while to expand the evaluation of mouse movements to
include SB_PAGEUP and SB_PAGEDOWN messages if
the mouse moves above 0 - 30, or below Height + 30.

Once dragging and scrolling are functional, the DragOver
handler must be created. All this handler must do is check
FEBRUARY 1996
that the source of the OnDragOver event is the TOutline con-
trol and, if so, accept a drop if it occurs.

The OnDragDrop event must trigger the move of the dragged
node to be a child of the dropped-on node (moving all its
children with it). In addition, the OnDragDrop event must
update the dragged node’s corresponding record in Table1 to
reflect the new Supervisor. This is accomplished in four steps:
1) Extract the EmpNo values from the dragged outline node

and the dropped-on outline node.
2) Move the TTable record pointer to the dragged outline

node’s employee number using TTable’s FindKey
method.

3) Call TTable’s Edit method, move the dropped-on outline
node’s employee number into the record’s Supervisor field,
and call TTable’s Post method.

4) Call TOutline’s MoveTo method to move the dragged node
and its children to the dropped-on node.

The handler checks to ensure that a parent is not being dragged
to one of its own children before accepting the drop. This pre-
vents the creation of a cyclical reference (i.e. employee 102 is
the supervisor of employee 54, and employee 54 is the supervi-
sor of employee 102). If this check were not put in place, and a
cyclical reference was created, the node would not actually
move until the outline was cleared and reloaded. During
reload, the records would be added as orphaned records.

Notice that, if the dragged node is dropped on the master
parent Employees, the extracted EmpNo value is blank.
Hence the purpose of the master parent — drop a node on it
and the node becomes a top-level parent.

Keeping the Table Synchronized
To keep the contents of the TDBEdit fields synchronized with
the currently selected node on the outline, the record pointer
of the TTable must be moved whenever the currently selected
node changes. This is best accomplished through the OnClick
event of the outline. The key field value is extracted from the
outline node, and the FindKey method of Table1 is called to
reposition the record pointer.

To complement record synchronization, there are lines
throughout the code that hide/show the ScrollBox (thereby hid-
ing/showing the TDBEdit fields grouped within), depending
on whether the EmpNo extracted from the currently selected
TOutlineNode is found in the table. The scrollbox is hidden if
the record cannot be found. This should only occur when the
master node Employees is selected or, in a multi-user environ-
ment, if the record was deleted and the DataSet refreshed.

Conclusion
TOutline organizes layers of hierarchical data with ease — that’s
its power. With a simple algorithm, the outline can be loaded
from a self-referencing database — opening the door to drag-
and-drop manipulation of the data's hierarchy. Self-referencing
tables are by no means the only relation type where TOutline can
Delphi INFORMANT ▲ 18

Informant Spotlight
be used; one-to-many and one-to-many-to-many relations may
also lend themselves to hierarchical manipulation. Of course, a
completely new algorithm would need to be designed. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Delphi Informant Works CD located
in INFORM\96\FEB\DI9602JC.
FEBRUARY 1996

Jeff Chant is the owner of Maelstrom Software, an Ontario-based company specializing
in the design and construction of Delphi tools and applications. He is also a SYNON
architect, working with large warehouse management systems on the AS/400. He can
be reached on CompuServe at 71431,62.
{ Private declarations }
procedure ParentLoad;
procedure ChildLoad;
procedure ChildReiterate;
procedure ProcessChildRecord;
procedure AddNodeText;

public
{ Public declarations }

end;

var
Form1: TForm1;
ReIterate, IterateWithoutAdd,
ChildAdded, NodeDrag, ScrollUp,
ScrollDown, ScrollLeft,
ScrollRight: Boolean;

const

{ Index to sort the table by }
SortIndexName = 'ByName';
{ Field to display after SeekField }
DisplayField = 'DisplayField';
{ The key field of the self-reference }
SeekField = 'EmpNo';
{ The field referencing the key field }
RecursiveField = 'Supervisor';

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin

Table1.Open;
end;

procedure TForm1.Table1CalcFields(DataSet: TDataset);
begin

Table1DisplayField.AsString :=
Table1LastName.AsString + ', ' +
Table1FirstName.AsString;

end;

procedure TForm1.SpeedButton1Click(Sender: TObject);
begin

{ Hide the scrollbox and its TDBEdit fields }
ScrollBox.Visible := False;
with Table1 do

begin
Screen.Cursor := crHourglass;
try

Form1.ParentLoad;
Form1.ChildLoad;
Form1.AddNodeText;

finally
Screen.Cursor := crDefault;

end;
end;

end;

procedure TForm1.ParentLoad;
begin

with Table1 do
begin

Outline1.Clear;
{ Add a Master Parent for all valid employees }
Outline1.Add(0, 'Employees');
{ Index the table for outline display order }
IndexName := SortIndexName;
First;
while not eof do

begin

{ If the record is top-level (has no parent) }
if FieldByName(RecursiveField).AsInteger = 0 then
Begin Listing One — Unit1
unit Unit1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, StdCtrls, Forms, DBCtrls, DB,
DBTables, Grids, Outline, Buttons, Mask, ExtCtrls,
Dialogs;

type
TForm1 = class(TForm)

ScrollBox: TScrollBox;
Label1: TLabel;
EditEmpNo: TDBEdit;
Label2: TLabel;
EditLastName: TDBEdit;
Label3: TLabel;
EditFirstName: TDBEdit;
Label4: TLabel;
EditPhoneExt: TDBEdit;
Label5: TLabel;
EditHireDate: TDBEdit;
Label6: TLabel;
EditSalary: TDBEdit;
Label7: TLabel;
EditSupervisor: TDBEdit;
Panel1: TPanel;
DataSource1: TDataSource;
Panel2: TPanel;
Table1: TTable;
SpeedButton1: TSpeedButton;
Outline1: TOutline;
Table1EmpNo: TIntegerField;
Table1LastName: TStringField;
Table1FirstName: TStringField;
Table1PhoneExt: TStringField;
Table1HireDate: TDateTimeField;
Table1Salary: TFloatField;
Table1Supervisor: TIntegerField;
Table1DisplayField: TStringField;
Timer1: TTimer;
procedure FormCreate(Sender: TObject);
procedure Table1CalcFields(DataSet: TDataset);
procedure SpeedButton1Click(Sender: TObject);
procedure Outline1MouseMove(Sender: TObject;

Shift: TShiftState;
X, Y: Integer);

procedure Outline1DragOver(Sender, Source: TObject;
X, Y: Integer;
State: TDragState;
var Accept: Boolean);

procedure Outline1DragDrop(Sender, Source: TObject;
X, Y: Integer);

procedure Timer1Timer(Sender: TObject);
procedure Outline1Click(Sender: TObject);

private
Delphi INFORMANT ▲ 19

Informant Spotlight
{ Add the record as a child of the Master
Parent created above (index=1) }

Outline1.AddChild(1,
FieldByName(SeekField).AsString);

Next;
end;

{ Set the index back to the primary key }
IndexFieldNames := SeekField;
First;

end;
end;

procedure TForm1.ChildLoad;
begin

ReIterate := True;
IterateWithoutAdd := False;

{ While there are still child records that have not
been added to a parent }
while ReIterate do

begin
ReIterate := False;
ChildAdded := False;
while not Table1.eof do

begin;
Form1.ChildReIterate;
Table1.Next;

end;
Table1.First;

{ If an iteration through the table was performed,
and there were record(s) not yet added to the
outline, but no records were added to the outline
throughout the iteration }

if ReIterate and
not ChildAdded then

IterateWithoutAdd := True;
end;

end;

procedure TForm1.ChildReIterate;
var

NodeIndex: integer;
begin

with Table1 do
begin

{ If record has parent (i.e. Supervisor not 0) }
if FieldByName(RecursiveField).AsInteger <> 0 then

begin
NodeIndex := Outline1.GetTextItem(FieldByName

(SeekField).AsString);

{ If record was not added to the outline in a
previous iteration (can't be found in outline) }

if NodeIndex = 0 then
Form1.ProcessChildRecord;

end;
end;

end;

procedure TForm1.ProcessChildRecord;
var

NodeIndex: integer;
begin

with Table1 do
begin

NodeIndex := Outline1.GetTextItem
(FieldByName(RecursiveField).AsString);

{ If node representing parent record does
not exist in the outline }

if NodeIndex = 0 then
begin
FEBRUARY 1996
{ Indicate that a reiteration will be
necessary }

ReIterate := True;
{ If this is the second iteration through the

file with no new added child nodes, add the
record as an orphan }

if IterateWithoutAdd = True then
begin

Outline1.AddChild(0,FieldByName
(SeekField).AsString);

end;
end

else
{ If node representing parent record does exist,

add the record as a child }
begin

ChildAdded := True;
Outline1.AddChild(NodeIndex,FieldByName

(SeekField).AsString);
end;

end;
end;

procedure TForm1.AddNodeText;
var

NodeIndex: integer;
begin

with Table1 do
begin

First;
while not eof do

begin
NodeIndex := Outline1.GetTextItem(FieldByName

(SeekField).AsString);
if NodeIndex <> 0 then

Outline1[NodeIndex].Text :=
FieldByName(SeekField).AsString + ' ' +
FieldByName(DisplayField).AsString;

Next;
end;

end;
end;

procedure TForm1.Outline1MouseMove(Sender: TObject;
Shift: TShiftState;
X, Y: Integer);

begin
with Outline1 do

begin
if not Dragging then

begin
if (Shift = [ssLeft]) then

BeginDrag(False);
end

else
begin

{ If the mouse has been dragged outside the
TOutline component }

if (Y < 0) or (Y > Height) or
(X < 0) or (X > Height) then

begin
ScrollUp := False;
ScrollDown := False;
ScrollLeft := False;
ScrollRight := False;
if Y < 0 then

ScrollUp := True
else if Y > Height then

ScrollDown := True;
if X < 0 then

ScrollLeft := True
else if X > Height then

ScrollRight :=True;
Delphi INFORMANT ▲ 20

Informant Spotlight
Timer1.Enabled := True;
end

else
Timer1.Enabled := False;

end;
end;

end;

procedure TForm1.Outline1DragOver(Sender, Source: TObject;
X, Y: Integer;
State: TDragState;
var Accept: Boolean);

begin
if Source is TOutline then

Accept := True;
end;

procedure TForm1.Outline1DragDrop(Sender, Source: TObject;
X, Y: Integer);

var
FieldFrom, FieldTo,
NodeFrom, NodeTo,
NodeText: string;
IndexFrom, IndexTo,
ParentIndex: integer;

begin
if (Source is TOutline) and

(Outline1.GetItem(X, Y) <> Outline1.SelectedItem) then
begin

IndexFrom := Outline1[Outline1.SelectedItem].Index;
NodeFrom := Outline1[Outline1.SelectedItem].Text;

{ Extract the key field from the fromnode }
FieldFrom := Copy(NodeFrom, 1, Pos(' ', NodeFrom)-1);
IndexTo := Outline1[Outline1.GetItem(X,Y)].Index;
NodeTo := Outline1[Outline1.GetItem(X,Y)].Text;

{ Extract the key field from the tonode }
FieldTo := Copy(NodeTo, 1, Pos(' ', NodeTo)-1);

{ Verify that FromNode is not an ancestor of
ToNode before moving }

ParentIndex := Outline1[IndexTo].Parent.Index;
while (ParentIndex <> 0) and

(ParentIndex <> IndexFrom) do
ParentIndex := Outline1[ParentIndex].Parent.Index;

{ If FromNode is a direct ancestor of ToNode,
send error message }

if ParentIndex = IndexFrom then
MessageDlg('Sorry, you have attempted to create' +

'a cyclical relation.',mterror,[mbOK],0)
else

begin
if MessageDlg('Make [' + NodeFrom + '] a child of [' +

NodeTo + ']?',mtConfirmation,
mbOkCancel,0) = mrOk then

begin
{ Indicate that a NodeDrag move will be
performed--this will prevent OnClick from
triggering an Index Out of Bounds exception }

NodeDrag := True;
with Table1 do

begin
if FindKey([Fieldfrom]) then

begin
Edit;
FieldByName(RecursiveField).AsString

:= Fieldto;
Post;
Outline1[Outline1.SelectedItem].MoveTo

(Outline1.GetItem(X,Y),oaAddChild);
end;

end;
end;
FEBRUARY 1996
{ Move the record pointer to the currently
selected node to update the TDBEdit fields }

if Outline1.ItemCount >= 1 then
begin

NodeText :=
Outline1[Outline1.SelectedItem].Text;

NodeText :=
Copy(NodeText, 1, Pos(' ', NodeText)-1);

if Table1.FindKey([NodeText]) then
ScrollBox.Visible := True

else
ScrollBox.Visible := False;

end;
end;

end;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin

with Outline1 do
begin

if Dragging then
begin

if ScrollUp then
SendMessage(Handle, WM_VSCROLL, SB_LINEUP,

SB_THUMBTRACK)
else if ScrollDown then

SendMessage(Handle, WM_VSCROLL, SB_LINEDOWN,
SB_THUMBTRACK);

if ScrollLeft then
SendMessage(Handle, WM_HSCROLL, SB_LINEUP,

SB_THUMBTRACK)

else if ScrollRight then
SendMessage(Handle, WM_HSCROLL, SB_LINEDOWN,

SB_THUMBTRACK);
end

else

Timer1.Enabled := False;
end;

end;

procedure TForm1.Outline1Click(Sender: TObject);
var

NodeText: string;
begin

{ Only perform if a node has not just been dragged
to a new location }

if not NodeDrag then
begin

if Outline1.ItemCount >= 1 then
begin

NodeText := Outline1[Outline1.SelectedItem].Text;
NodeText := Copy(NodeText,1,Pos(' ',NodeText)-1);
if Table1.FindKey([NodeText]) then

ScrollBox.Visible := True
else

ScrollBox.Visible := False;
end;

end
else

NodeDrag := False;
end;

end.

End Listing One
Delphi INFORMANT ▲ 21

OP Tech
Delphi 1.0 / Object Pascal

By Bill Todd

FEBRUARY 1996

Error Handling: Part I
A Primer for Handling Object Pascal Exceptions

Figure 1: A form that changes the
H andling run-time errors is a serious concern regardless of the language
or environment in which you develop applications. Delphi is no differ-
ent. It handles errors through an object called an exception. When a

run-time error occurs, Delphi raises (creates) an exception. If your code does
not handle it, an OnException event is raised.

In this two-part series, you’ll learn how to handle exceptions, ensure that cleanup code is
always executed, and create custom exceptions and exception handlers.

Handling Cleanup and Resource Allocations
Cleanup code is easy to implement in Delphi. Cleanup code is code that must execute to
restore the system to a safe, stable state even if a run-time error occurs. For example, disabling
an application’s data-aware controls allows you to open and close a Table or Query compo-
nent, or change a Table component’s active index without annoying screen flicker.

To handle cleanup chores, Delphi provides the try..finally construct. The easiest way to understand
it is to examine the code from the sample project, CLEAN.DPR (its form is shown in Figure 1).
The form features Table, DataSource, and DBGrid components. The Table component is connect-
ed to the Customer table in the DBDEMOS database. It also contains two Buttons that let you
change the active index from CustNo (the primary index) to ByCompany (the secondary index).
This OnClick event handler switches the indexes:
active index.
procedure TForm1.Button2Click(Sender: TObject);
begin

with Table1 do
begin

DisableControls;
IndexName := 'x';
EnableControls;

end;
end;

Unfortunately, there’s a problem with this code. If the statement
that changes the IndexName property fails because the index
does not exist, an exception is automatically generated and the
procedure’s execution terminates. This means the EnableControls
call will not execute. The result is that you will be in the form
and the DBGrid will no longer be connected to the Table. Try it
by running the NOCLN.EXE program and click the By

Company button. Try to move around in the grid. Obviously,
you don’t want to leave the user in this condition.
Delphi INFORMANT ▲ 22

OP Tech

procedure TSearchForm.FindBtnClick(Sender: TObject);
var

CustTbl: TTable;
begin

{ Create a TTable object. }
CustTbl := TTable.Create(SearchForm);
{ Make sure the TTable's destructor gets called

no matter what happens in the following code. }
try

with CustTbl do
begin

{ Assign the DatabaseName and TableName. }
DatabaseName := 'DBDEMOS';
TableName := 'customer.db';
{ Open the table. }
Open;
{ Search for the requested name. }
while EOF = False and

ToFind.Text<>FieldByName('Company').AsString do
Next;

{ Display a message. }
if ToFind.Text = FieldByName('Company').AsString then

MessageDlg('Found',mtInformation,[mbOK],0)
else

MessageDlg('Not Found',mtInformation,[mbOK],0);
end;

finally
{ Call the TTable's destructor to free its memory. }
CustTbl.Free;

end;
end;

Figure 3: The code from the Find button’s OnClick handler.
Fortunately, Delphi’s solution to this problem is elegant
because it allows you to guarantee that the cleanup code will
execute in spite of any run-time errors that occur. For exam-
ple, look at the OnClick handler of the By Company button in
the CLEAN.DPR project:

procedure TForm1.Button2Click(Sender: TObject);
begin

with Table1 do
begin

DisableControls;
try

IndexName := 'ByCompany';
finally

EnableControls;
end;

end;
end;

The code following the DisableControls method call is
enclosed in a try..finally block. Code in the finally block exe-
cutes if an exception occurs in any part between try and final-
ly. Therefore, the EnableControls call will execute even if the
change to the IndexName property fails. You can see this by
changing IndexName to X and running this code. After click-
ing the By Company button and clearing the error dialog box,
you can still move around in the grid.

In addition, it’s critical that code executes when resources
are allocated and you must ensure they are released.
Memory, files, and Windows resources must be recovered
if an error occurs. In an object-oriented environment, this
is best illustrated by creating an instance of an object in
your code.

Figure 2 shows the form from the sample project
ALLOC.DPR. After a company name is entered, the form
searches the customer table and reports if a match was found.
The Find button’s OnClick event handler declares a variable
named CustTbl of type TTable that searches the customer
table (see Figure 3). However, CustTbl must first be created
by calling its constructor method, Create.
FEBRUARY 1996

Figure 2: Dynamic object creation.
Here’s the important issue: Whenever you create a new instance
of an object by calling its constructor, you are allocating memo-
ry. Therefore, you are responsible for deallocating that memory
by calling the object’s destructor method. Otherwise, memory
will not be available until you restart Windows.

To ensure that CustTbl’s Free method is called, all the code
in this procedure (following the call to TTable’s Create
method) is enclosed in a try..finally block. The call to the
destructor, Free, follows the finally keyword so that it will
execute even if an exception is raised by any of the code
between try and finally. (Note that try.. finally blocks can
be nested to any depth.)

The code from the FASTE.DPR
project is an example of protecting
both file and memory resources.
Figure 4 shows the form for this
project and Figure 5 is the Create

button’s OnClick event handler.

This procedure opens a new file
by calling the run-time library
(RTL) procedure, Rewrite. Then
after the file has been opened,
the code ensures that the file is closed by encasing the sub-
sequent statements in a try..finally block. If an error occurs,
the call is made to this statement in the finally block:

System.Close(addrFile)

Figure 4: The FASTE pro-
ject’s main form.
Delphi INFORMANT ▲ 23

OP Tech

Figure 5 (Top): The code attached to the Create button.
Figure 6 (Bottom): Code from the Read button.

procedure TForm1.CreateBtnClick(Sender: TObject);
const

MaxRecs = 100;
var

buff: array[1..MaxRecs] of TAddress;
addrFile: File;
i, count: Word;

begin
AssignFile(addrFile,'addr.dat');
Rewrite(addrFile,SizeOf(TAddress));
try

{ Put 100 records into the buffer. }
for i := 1 to MaxRecs do

with buff[i] do
begin

PasToArray('John Doe',name);
PasToArray('123 East Main Street',addr);
PasToArray('New York',city);
PasToArray('NY',state);
PasToArray('55555-5555',zip);

end;
{ Write 100 buffers (10,000 records). }
for i := 1 to 100 do

BlockWrite(addrFile,buff,MaxRecs,count);
finally

System.Close(addrFile);
end;

end;

procedure TForm1.ReadBtnClick(Sender: TObject);
const

MaxRecs = 500;
type

Tbuff = array[1..MaxRecs] of TAddress;
var

buff: ^Tbuff;
addrFile: File;
total,
count: Word;

begin
New(buff);
try

AssignFile(addrFile,'addr.dat');
Reset(addrFile,SizeOf(TAddress));
try

{ Read the file, MaxRecs records at a time. }
total := 0;
repeat

count := 0;
BlockRead(addrFile,buff^,MaxRecs,count);
total := total + count;

until count = 0;
finally

System.Close(addrFile);
end;
ReadCount.Caption := IntToStr(total);

finally
Dispose(buff);

end;
end;
The Read button’s OnClick event handler (see Figure 6) has
two resource allocations that must be protected and uses
nested try..finally blocks.

Memory is the first resource that is allocated when New is called:

New(buff);

This assigns the buffer array into which the records are read.
Then, the try keyword begins a block that ends with the call
to Dispose after the finally keyword:
FEBRUARY 1996
Dispose(buff)

Within this outer try..finally block, the call to Reset opens a file:

Reset(addrFile, SizeOf(TAddress));

Next, the try keyword initiates a try..finally block that pro-
tects the file resource by ensuring the following command is
called in the finally section:

System.Close(addrFile);

If a run-time error occurs in this code, neither global heap
memory nor file handles will be lost.

Trapping RTL Exceptions
Calling RTL procedures and functions can generate excep-
tions. RTL exceptions fall into one of these categories:
• Conversion
• Floating point math
• Hardware
• Heap (memory allocation)
• Input/Output
• Integer math
• Typecast

Before delving into the details of RTL exception handling, look
at the sample INTERR.DPR project for an overview of the
process. Its form has a Label, Panel, and three Buttons (see
Figure 7). Here is the MathError button’s OnClick event handler:

procedure TForm1.MathErrorClick(Sender: TObject);
var

i,j,k,l,m: Integer;
begin

i := 23;
j := 0;
l := 2;
m := 4;

{ Make a calculation. }
k := i div j * (l div m);
{ Display the result. }
Result.Caption := IntToStr(k);

end;

As you can see, the code declares five integer variables and assigns
values to all of them except k. When this expression is evaluated:

k := i div j * (l div m);

an RTL exception is raised because the value of j is zero
and division by zero is not allowed. In this case, Delphi’s
default exception handler will manage the error by display-
ing an error message in a dialog box and ending execution
of this procedure.

The MathErrorHandled button’s OnClick handler (see Figure 8)
will not display the normal error dialog box that appears
when an exception is raised. In addition, your code does not
Delphi INFORMANT ▲ 24

procedure TForm1.MathErrorClick(Sender: TObject);
var

i,j,k,l,m: Integer;
begin

i := 23;
j := 0;
l := 2;
m := 4;

try
k := i div j * (l div m);

except
on EIntError do k := 0;

end;

{ Display the result. }
Result.Caption := IntToStr(k);

end;

Figure 7:
The INTERR
project’s
main form.

Figure 8: The OnClick handler for the MathErrorHandled button.

OP Tech

Exception Description

EFault The base exception object for all faults.

EGPFault General protection fault. The most common
cause of GPFs is an uninitialized pointer.

EStackFault Illegal access to the stack segment.

EPageFault The Windows memory manager could not
access the swap file.

EInvalidOpCode The processor encountered an undefined
instruction. This is usually caused by trying
to execute data.

EBreakpoint The program generated a breakpoint interrupt.

ESingleStep The program generated a single step interrupt.

Figure 9 (Top): Integer math exceptions. Figure 10 (Middle): Float-
ing point math exceptions. Figure 11 (Bottom): Hardware exceptions.

Exception Description

EInvalidOp The processor encountered an invalid instruc-
tion. This usually means the processor is trying
to execute data due to a pointer error.

EZeroDivide Attempt to divide by zero.

EOverflow A floating point operation overflowed.

EUnderflow A floating point operation underflowed.

Exception Description

EDivByZero An attempt to divide by zero.

ERangeError The number or expression result is beyond
the range of the integer type.

EIntOverflow A mathematical operation caused an integer
overflow.
handle it because the calculation is enclosed in a try..except
block. The except code sets the result to zero and that’s the
end of the exception. Clearly, this is much easier than han-
dling the possibility of division by zero without try..except.
To detect if j or m is zero would require:

if (j = 0) or (m = 0) then
k := 0

else
k := i div j * (l div m);

If the computation were more complex, testing for all possible
integer math errors requires a lot of code. Note that when you
run a program in the IDE, it runs under the control of the
Interactive Debugger. You will always see its exception dialog box
whether your code handles the exception or not. To view what
the user will see, run the application from Program Manager.

When an exception is raised in a try..except block, Delphi
checks if it’s listed in the except section. If so, then the code
for that exception is executed. In this example, if any integer
math exception occurs then the value of k is set to zero.

Understanding the RTL Exception Hierarchy
Before continuing, you must understand how the seven
classes of RTL exceptions are organized. Three of the cate-
gories — integer math, floating point math, and hardware
exceptions — have a hierarchy:
FEBRUARY 1996
• EIntError is a generic integer math exception. You can
test for it, or for the specific integer math errors shown
in Figure 9.

• For floating point math operations, the generic exception is
EMathError. The individual floating point errors are listed
in Figure 10.

• The generic hardware exception is EProcessorException and
its specific descendants are listed in Figure 11.

With the exception of EGPFault, you should never encounter
or need to worry about any of the hardware exceptions. They
only occur if a serious hardware or operating system failure
happens or if you are running under a debugger. The
remaining four categories of exception do not have a
generic exception. You must test for each specific exception
that you want to handle:
• For input/output errors, there is a single exception,

EInOutError. It has a field named ErrorCode containing the
operating system error code for the error that occurred.

• EInvalidCast is a single typecast exception that occurs any-
time you attempt a typecast using the AS operator and the
typecast fails.

• All conversion exceptions raise the EConvertError excep-
tion. For example, if you call StrToInt and the string can-
not be converted, then EConvertError is raised.

• Two heap exceptions can occur when using dynamic
memory. They are listed in Figure 12.
Delphi INFORMANT ▲ 25

OP Tech

procedure TForm1.MathErrorWithMessageClick(Sender:
TObject);

var
i,j,k,l,m: Integer;

begin
i := 23;
j := 0;
l := 2;
m := 4;
try

k := i div j * (l div m);
except

on EDivByZero do begin
k := 0;
MessageDlg('Divide by zero error',mtError,[mbOK],0);
end;

on EIntError do begin
k := 0;
MessageDlg('Integer math error.',mtError,[mbOK],0);
end;

end;
{ Display the result. }
Result.Caption := IntToStr(k);

end;

Figure 12 (Top): Heap exceptions. Figure 13 (Bottom): The OnClick
event handler for the MathErrorWithMessage button.

Exception Description

EOutOfMemory An attempt to allocate memory on the heap
failed.

EInvalidPointer An attempt was made to dispose of a pointer
that points to an address outside of the heap.

Bill Todd is President of The Database Group, Inc., a Phoenix area consulting and devel-
opment company. He is co-author of Delphi: A Developer’s Guide [M&T Books, 1995],
Creating Paradox for Windows Applications [New Riders Publishing, 1994], and
Paradox for Windows Power Programming; Technical Editor of Paradox Informant; a
Handling Multiple Exceptions
The third button on the INTERR.DPR form,
MathErrorWithMessage, shows how to handle multiple
exceptions in a single try..except block (see Figure 13).
FEBRUARY 1996
If you look at the except clause, you’ll notice that it contains
checks for two exceptions, EDivByZero and EIntError. In this
case, a specific message is displayed for EDivByZero and
another message for all other integer math exceptions. The
order of the tests in this code is critical. If you first test for
EIntError, you will never see the EDivByZero message. This is
because EIntError includes all integer math exceptions includ-
ing EDivByZero. This construct lets you handle as many
exceptions as needed in a single try..except block.

Conclusion
This article has presented the basics of Delphi's exception
handling mechanism. You have seen how to handle resource
allocations to ensure that the resources are freed if a run-time
error occurs. You have also seen how to handle exceptions
raised by run-time library procedures. The second part of this
series explores using the exception object, silent exceptions,
writing your own custom exception handler, and more. ∆

This article was adapted from material from Delphi: A Developer’s
Guide by Bill Todd and Vince Kellen [M&T Books, 1995 —
800-488-5233].

The demonstration projects referenced in this article are avail-
able on the Delphi Informant Works CD located in
INFORM\96\FEB\DI9602BT.
Delphi INFORMANT ▲ 26

member of Team Borland; and a speaker at every Borland database conference. He can
be reached at (602) 802-0178, or on CompuServe at 71333,2146.

FEBRUARY 1996

Filtering Tables: Part II
An Introduction to the Query Component

DBNavigator
Delphi 1.0 / Object Pascal / SQL

By Cary Jensen, Ph.D.
I n last month’s “DBNavigator” we discussed how to limit access to specific
records in a table that match a range. We considered several techniques
that involve using Table components. In this installment of “DBNavigator,”

we’ll use a Query component to achieve a similar effect. Specifically, we’ll
discuss how to create a query that returns a subset of records, as well as how
to control which records are selected at run time.

First, we’ll compare Table and Query components for selecting subsets of records from a table.
Then, we’ll continue with three basic techniques for selecting records using queries. The rea-
sons for displaying a subset of records from a table were discussed in last month’s article, so
they won’t be repeated here.

The techniques in this article use Query components, and therefore involve SQL (Structured
Query Language). While SQL itself is not necessarily difficult to use, there are many complex
issues involved that are far beyond the scope of this article. Therefore, we’ll only cover the
issues that are relevant to filtering tables.

Query versus Table Components
Although there are some similarities between displaying subsets of a table’s records using Table
and Query components, there is one overriding difference. Due to the nature of queries, an
index is not required. This is not true for Table components. Using a Table component, you
can only define ranges for fields involved in an index. Likewise, creating linked tables requires
an appropriate index. Furthermore, those indexes must have a specific structure. For example,
you can set a range based on the values in a field named City, but only if there is at least one
index where City is the first field.

A second major difference is that Query components do not have range-related methods
(such as SetRange, ApplyRange, and so on). Instead, they have a SQL property that you use
to define SQL statements. For example, to filter a table, a SELECT statement is used. This
is SQL DML (Data Manipulation Language) statement, and is used to define which data
will be returned as an answer set.

Selecting Records with Queries
There are two critical properties for using Query components. The first is the SQL property,
which is a StringList property. You can, and usually do, enter this property at design time
using the String List editor (the third technique demonstrated in this article shows you how
to define this property at run time). The text that you enter into the SQL property defines
which process the query will perform.
Delphi INFORMANT ▲ 27

DBNavigator
The second is the DatabaseName property that you must set
to either a BDE alias or a subdirectory path. DatabaseName
defines the location of the tables being queried. There is,
however, one situation where DatabaseName is not required.
If you include the alias name in the Query’s SQL statement,
DatabaseName can remain blank.

When selecting subsets of records, you’ll use the SQL SELECT
statement. It has two required parts or clauses: SELECT and
FROM. In SELECT, you specify the fields to include in the
answer set that is returned, and you use the FROM statement
to specify the tables from which the fields are selected. Selecting
subsets of records requires one additional clause, WHERE, for
identifying the appropriate records. There are additional clauses
that you can use with the SELECT statement, but they are
outside the scope of this article. (For information on these
other clauses, select Help | Topic Search from Delphi’s menu
and enter SQL Statements in the Search All dialog box.)

All the queries in this article will be single-table queries, since
Delphi 1.0 only supports editing of single-table queries. Let’s
consider the SELECT statement. SELECT is followed by a
comma-separated list of field names that you want to include
in the answer set. The FROM clause includes a comma-sepa-
rated list of the tables where these fields are found. For exam-
ple, the following SQL statement will select the CustNo and
Company fields from the CUSTOMER.DB table:

SELECT CustNo, Company FROM CUSTOMER

The above example assumes that the DatabaseName property
has been set to DBDEMOS, an alias that points to the location
of the CUSTOMER.DB table. (Delphi creates this alias dur-
ing installation. If you do not have this alias already estab-
lished, you must create it before trying these examples.)

Alternatively, you can include the alias in the table name. For
example, the following SQL statement does not require the
DatabaseName property to be assigned a value:

SELECT CustNo, Company FROM ':DBDEMOS:CUSTOMER.DB'

If the DatabaseName property has been set to DBDEMOS, the fol-
lowing SQL statement has the same effect as the preceding one:

SELECT CustNo, Company FROM CUSTOMER

To select all fields from the specified table, you can replace
the individual field names with an asterisk. For example,
the following statement selects all fields from the CUS-
TOMER.DB table (again, assuming the DatabaseName
property has been set to DBDEMOS):

SELECT * FROM CUSTOMER

While the SELECT clause specifies which fields (or columns in
SQL vernacular) will be included in the answer set, the
WHERE clause specifies which records (or rows) will be includ-
FEBRUARY 1996
ed. For example, the following statement will select all fields
from each record where the CustNo field is equal to 1221:

SELECT * FROM CUSTOMER
WHERE CustNo = 1221

Non-numeric comparison values must be enclosed in quotes.
For example:

SELECT StateName FROM STATES
WHERE StateCode = 'AZ'

Also, any comparison operators, including >, <, >=, and so forth,
can be used as a comparison operator in a WHERE clause.

A WHERE clause can also include multiple conditions, using
the AND and OR operators. For instance, assuming the
DatabaseName property is set to DBDEMOS, the following query
will select all fields from the ORDERS table where CustNo is
1221 and the SaleDate is greater than 1/1/94:

SELECT * FROM ORDERS
WHERE CustNo = 1221 AND

SaleDate > '1/1/94'

Using these basic rules, it’s now possible to demonstrate three
ways of selecting subsets of records using Query components.

Linked Queries
The easiest, although least flexible, way to select a subset of
records with a query is to use a linked query. In a linked
query, the subset of records is defined by values in another
DataSource, such as a Table. The WHERE condition(s) use
one or more fields in the DataSource’s DataSet to select spe-
cific records to display.

To do this, you set the Query component’s DataSource prop-
erty to the name of the DataSource that contains the field(s)
used in the Query’s WHERE clause. Then, within the
WHERE clause, you include the field name(s) from the
DataSource’s DataSet in comparisons. The only trick to this is
that the field names must be preceded by colons (:) so the
Query can distinguish them from static conditions.

This technique is difficult to describe, but easy to demon-
strate with an example. Follow these instructions to create a
linked query:
1) Create a new project. On the new form, add two Label

components, two DBEdit components, a DBGrid, two
DataSources, a Button, a DBNavigator, a Table, and a
Query component. Your form should resemble Figure 1.

2) Set Form1’s Caption property to Linked Form Example,
and its Position property to poScreenCenter.

3) Set the Caption property for Label1 to Company: and the
Caption property for Label2 to Customer Number:. Next, set
the DataSet property of DataSource1 to Table1, and the
DataSet property of DataSource2 to Query1. Set the
DatabaseName property of Table1 to DBDEMOS, and the
Delphi INFORMANT ▲ 28

Figure 1:
A new
form for
the
LINKQRY
project.

Figure 3:
The
completed
query
example.

Figure 2: A
SQL SELECT
statement
for a para-
meterized
query.

DBNavigator
TableName property to CUSTOMER.DB. Finally, set the Active
property of Table1 to True.

4) Set the DataSource properties of both DBEdit1 and
DBEdit2 to DataSource1. Next, set the DataField property
of DBEdit1 to Company, and the DataField property of
DBEdit2 to CustNo.

5) Set the DataSource property of DBGrid1 to Query1. Set
the DataSource property of DBNavigator1 to Table1.

6) Set the Caption property of Button1 to &Close. Next,
double-click this button to create an OnClick event han-
dler, and enter the procedure Close. This event handler
should resemble:

procedure TForm1.Button1Click(Sender: TObject);
begin

Close;
end;

7) Now it’s time to modify the Query component. Select
Query1 and set its DatabaseName property to DBDEMOS.
Next, open the property editor for the SQL property and
enter the SQL statement shown in Figure 2. Notice that
the CustNo field name in the WHERE condition is pre-
ceded by a colon. CustNo is a field in CUSTOMER.DB
that is the DataSet pointed to by DataSource1.

8) Set the Active property for Query1 to True. Now run the
form. Your screen should resemble Figure 3. Notice that
each time you move to a new record in
CUSTOMER.DB, the contents of the DBGrid update
with the results of the linked query.

Parameterized Queries
Parameterized queries share many similarities with linked
queries. The SQL property is typically defined at run time,
and the WHERE clause includes values that change. In
linked queries, these values are based on values in a DataSet
pointed to by the Queries’ DataSource. In parameterized
queries, you control these values through code.

The following is an example of a parameterized SQL state-
ment. Notice that in the WHERE clause, CustNumber is pre-
ceded by a colon.

SELECT * FROM ORDERS
WHERE CustNo = :CustNumber
FEBRUARY 1996
In a parameterized query, the colon designates CustNumber as
a parameter. A parameterized query can have as many parame-
ters as necessary. The only restriction is that you must define
the value for a parameter before making the query active. This
can be done at design time using the property editor for the
Params property of the Query component. However, the only
reason for defining a parameter at design time is to activate the
query at design time. In most cases, the parameters are defined
and the query is activated (by setting the Active property to
True or by calling the Open method) at run time.

Figure 4 shows the Parameters dialog box. This is the property
editor for a Query component’s Params property. In this dialog
box you can define default values, as well as define the data type
of one or more of the parameters you have included in a query.

Defining a parameter at run time requires the use of either
the Params property or the ParamByName method. The
Params property is a zero-based array and its elements corre-
spond to the Query parameters based on order of inclusion in
the SQL statement. In the case of the preceding parameter-
ized SQL statement, CustNumber is the only parameter, so it
will correspond with the first element, 0, of the Params array.
Here is a sample statement that assigns the value 1221 to the
CustNumber parameter using the Params property:

Query1.Params[0].AsInteger := 1221;

If the query includes more than one parameter, the first
one that will appear in the SQL statement is associated
with element 0 of the Params property; the second is asso-
ciated with element 1, and so on.
Delphi INFORMANT ▲ 29

DBNavigator

Figure 4: The
Query component’s
Params property
editor.
The ParamByName method allows you to set a parameter’s
value based on the parameter’s name. For example, this state-
ment uses the ParamByName method, and is equivalent to the
preceding one that uses the Params property:

Query1.ParamByName('CustNumber').AsInteger := 1221;

Figure 5 is the main form of the PARAM.DPR project that
demonstrates parameterized queries. This form contains a
DBGrid, two Buttons, a DataSource, and a Query. The Table
is associated with the CUSTOMER.DB table in the directory
that the DBDEMOS alias points to.
Figure 5:
Form1 of the
project
PARAM.DPR.
Figure 6 is the second form in this project. It contains a
DBGrid, a Button, a DataSource, and a Query. This Query’s
SQL property is associated with the parameterized SQL state-
ment shown earlier.

Here is the critical code in this example:

procedure TForm1.Button2Click(Sender: TObject);
begin

Form2.Query1.Close;
Form2.Query1.ParamByName('CustNumber').AsInteger :=

Table1.FieldByName('CustNo').AsInteger;
Form2.Query1.Open;
Form2.Caption := 'Orders for ' +

Table1.FieldByName('Company').AsString;
Form2.ShowModal;

end;
FEBRUARY 1996

Figure 6:
Form2 of the
project
PARAM.DPR.
This code is associated with the OnClick event handler for the
Show Orders button on Form1.

First, the code closes the Query component on Form2 (in
case it’s already open — you cannot change the parame-
ters of an open query). Next, the CustNumber parameter is
assigned a value using the ParamByName method. The
value assigned to this parameter is based on the current
record of Table1.

Next, the query is opened, which executes the SELECT state-
ment. The Caption property of Form2 is then assigned an
appropriate title. Finally, the ShowModal method is used to
display Form2. The result is that the DBGrid on Form2 dis-
plays only those records associated with the Customer that
the user has selected on Form1.

This example is somewhat more complicated since the Query,
whose properties are being modified, appears on another form.
Remember, to refer to Form2 and its objects from Form1, the unit
associated with Form2 (in this case, it’s ParamU2) must be listed in
a uses clause in the unit associated with Form1 (ParamU in this
example). The ParamU unit is shown in Listing Two on page 32.
Listing Three on page 32 lists all the code for ParamU2.

Changing the SQL Property at Run Time
Parameterized queries are great when the fields you need to use
to select a subset of records are known. However, to create a
query where you sometimes select all records (i.e. when there is
no WHERE clause), and sometimes select a subset based on one
or more parameters, a parameterized query is not an option.

Likewise, if the table being queried is not known until run
time, a parameterized query cannot be used because a para-
meter cannot appear in the FROM clause. Instead, you must
modify the contents of the SQL property at run time. This
permits you to create flexible queries.

Since the SQL property is a StringList property, it can be mod-
ified using the methods of the TStringList class. Among the
most useful methods are Add and Clear. Add inserts a new line
into a StringList in the last position, whereas Clear empties a
StringList. The following is an example of how these two state-
ments can be used to define a new SQL statement at run time:

Query1.Close; { Close the query if it’s open }
Query1.SQL.Clear; { Remove old SQL statements }
Query1.SQL.Add('SELECT * FROM ORDERS');
Query1.SQL.Add(' WHERE CustNo = 1211');
Query1.SQL.Open; { Open the new query }

This technique is demonstrated in the SQL.DPR project (its
main form, Form1, is shown in Figure 7). This form contains
three Labels, Edits, and Buttons. When the user presses the
Show SQL or Show Records button, a StringList is constructed
based on the values entered in the three Edit components (this
is done with a custom procedure named BuildQueryString). If
the Edit components are empty, the StringList will not contain
Delphi INFORMANT ▲ 30

Figure 7:
Form1 of
the project
SQL.DPR.

DBNavigator
a WHERE clause. Otherwise, the StringList contains selection
conditions based on the entered data.

When the user presses Show SQL, the constructed StringList
is assigned to the Lines property of a Memo component on
Form2 (associated with the SQLU2 unit). This form is
then displayed (see Figure 8) and enables the user to view
the SQL statements. When the user presses Show Records,
StringList is assigned to the SQL property of a Query
object on Form3 (associated with SQLU3). This query is
then opened and returns the appropriate subset of records
(see Figure 9).
FEBRUARY 1996

Figure 8:
The SQL
statements
generated in
this example
are based on
user-entered
criteria.

Figure 9:
An answer
set based
on the cri-
teria shown
in Figure 8.
The code for SQL.DPR is shown in Listings Four, Five, and
Six beginning on page 33. Note that this example was simpli-
fied by defining custom procedures and functions for those
routines requiring repeated calls.

Other Query Issues
This article’s purpose is to describe the basics of creating
queries that display subsets of a table’s data. However, there
are many important query-related issues that are not directly
related to this topic. If you are new to generating queries, you
should read the online help concerning SQL queries, as well
as the Query component. In particular, you should study the
RequestLive and UpdateMode properties of the Query compo-
nent. These properties allow you to edit the query result. In
addition, you may want to examine the Database component.
It allows you to explicitly control transactions when you are
editing the results of a live query.

Conclusion
Queries provide you with an alternative to Table components
when you must display a subset of records from a table. Using
linked queries, you can have the Query component automati-
cally update itself based on values in the linked DataSource.
When you want to control the displayed records using code,
parameterized queries offer a simple alternative. When you
need the greatest flexibility in your SQL statements, editing
the SQL property at run time is the best solution. ∆

The demonstration forms referenced in this article are available
on the Delphi Informant Delphi Informant Works CD located
in INFORM\96\FEB\DI9602CJ.
Delphi INFORMANT ▲ 31

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database devel-
opment company. He is author of more than a dozen books, and is Contributing Editor of
Paradox Informant and Delphi Informant. Cary is this year’s Chairperson of the Paradox
Advisory Board for the upcoming Borland Developers Conference. He has a Ph.D. in
Human Factors Psychology, specializing in human-computer interaction. You can reach
Jensen Data Systems at (713) 359-3311, or through CompuServe at 76307,1533.

DBNavigator
Begin Listing Two — The Paramu Unit
unit Paramu;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, Grids,
DBGrids, DBTables, DB, Mask, DBCtrls;

type
TForm1 = class(TForm)

Table1: TTable;
DataSource1: TDataSource;
DBGrid1: TDBGrid;
Button1: TButton;
Button2: TButton;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

uses
paramu2;

procedure TForm1.Button1Click(Sender: TObject);
begin

Close;
end;

procedure TForm1.Button2Click(Sender: TObject);
begin

Form2.Query1.Close;
Form2.Query1.ParamByName('CustNumber').AsInteger :=

Table1.FieldByName('CustNo').AsInteger;
Form2.Query1.Open;
Form2.Caption := 'Orders for '+

Table1.FieldByName('Company').AsString;
Form2.ShowModal;

end;

end.
End Listing Two
Begin Listing Three — The Paramu2 Unit
unit Paramu2;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, DB, DBTables,
StdCtrls, Grids, DBGrids;

type
TForm2 = class(TForm)

DBGrid1: TDBGrid;
Button1: TButton;
DataSource1: TDataSource;
Query1: TQuery;

private
{ Private declarations }
FEBRUARY 1996
public
{ Public declarations }

end;

var
Form2: TForm2;

implementation

{$R *.DFM}

end.
End Listing Three
Begin Listing Four — The Sqlu1 Unit
unit Sqlu1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls;

type
TForm1 = class(TForm)

CustomerNumber: TEdit;
BeginDate: TEdit;
EndDate: TEdit;
ShowRecords: TButton;
CloseButton: TButton;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
ShowSQL: TButton;
procedure ShowRecordsClick(Sender: TObject);
procedure ShowSQLClick(Sender: TObject);
procedure BuildSQLString(var TheQuery: TStringList);
procedure CloseButtonClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

function IsDate(Source: TEdit) : Boolean;
procedure AddCondition(var TheQuery: TStringList;

const field, comparison, value: string);

var
Form1: TForm1;

implementation

{$R *.DFM}

uses sqlu2,sqlu3;

procedure AddCondition(var TheQuery: TStringList;
const field, comparison, value: string);

begin
if TheQuery.Count > 2 then

{ When Count > 2, there is already at
least one condition }

TheQuery.Add('and '+field+comparison+value)
else

TheQuery.Add(field+comparison+value);
end;

function IsDate(Source: TEdit) :Boolean;
{ This function returns True if a TEdit contains a date }
begin

try
StrToDate(TEdit(Source).Text);
result := True
Delphi INFORMANT ▲ 32

DBNavigator
except
result := False;

end;
end;

procedure TForm1.BuildSQLString(var TheQuery: TStringList);
begin

if BeginDate.Text <> '' then
if not IsDate(BeginDate) then

begin
BeginDate.SetFocus;
raise Exception.Create('Date value expected');

end;

if EndDate.Text <> '' then
if not IsDate(EndDate) then

begin
EndDate.SetFocus;
raise Exception.Create('Date value expected');

end;

TheQuery.Add('SELECT * FROM ORDERS') ;
if not ((CustomerNumber.Text = '') and

(BeginDate.Text = '') and
(EndDate.Text = '')) then

begin
TheQuery.Add('WHERE');
if CustomerNumber.Text <> '' then

AddCondition(TheQuery,'CustNo','=',
CustomerNumber.Text);

if BeginDate.Text <> '' then
AddCondition(TheQuery,'SaleDate','>=',

#39+BeginDate.Text+#39)
if EndDate.Text <> '' then

AddCondition(TheQuery,'SaleDate','<=',
#39+EndDate.Text+#39);

end;
end;

procedure TForm1.ShowRecordsClick(Sender: TObject);
var

TheQuery: TStringList;
begin

TheQuery := TStringList.Create;

try
BuildSQLString(TheQuery);
{ Query is done. Process it }
Form3.Query1.SQL := TheQuery;
Form3.Query1.Open;
Form3.ShowModal;

finally
TheQuery.Free;

end;

end;

procedure TForm1.ShowSQLClick(Sender: TObject);
var

TheQuery: TStringList;
begin

TheQuery := TStringList.Create;

try
BuildSQLString(TheQuery);
{ Query is done. Process it }
Form2.SQLStatements.Lines := TheQuery;
Form2.ShowModal;

finally
FEBRUARY 1996
TheQuery.Free;
end;

end;

procedure TForm1.CloseButtonClick(Sender: TObject);
begin

Close;
end;

end.
End Listing Four
Begin Listing Five — The Sqlu2 Unit
unit Sqlu2;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls;

type
TForm2 = class(TForm)

Button1: TButton;
SQLStatements: TMemo;

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form2: TForm2;

implementation

{$R *.DFM}

end.
End Listing Five
Begin Listing Six — The Sqlu3 Unit
unit Sqlu3;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls,
Grids, DBGrids, DB, DBTables;

type
TForm3 = class(TForm)

DataSource1: TDataSource;
Query1: TQuery;
DBGrid1: TDBGrid;
Button1: TButton;

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form3: TForm3;

implementation

{$R *.DFM}

end.
End Listing Six
Delphi INFORMANT ▲ 33

FEBRUARY 1996

Creating an
OLE Object Manager
State of the Object Art: Part II

The Way of Delphi
Delphi 1.0 / Object Pascal / OLE

By Gary Entsminger

Figure 1: You can use Microsoft Wor
insert objects into a Word document.
Don’t you hate it when someone breaks into an article before it even gets rolling? I do. But I can’t help myself. I
must warn you that the project we develop in this article behaves a bit differently on systems running
Windows 3.1 than those running Windows 95. And worse yet. I’m not sure why. So… if you’re a
Windows 95 user, you’ll experience all the thrills and chills of our project. If you’re using Windows 3.1,
compile the project and let me know what happens.
A Delphi application can be the “glue” that allows users to manipulate a
group of objects within a single application or document. These objects
can be ones you create in Delphi, or those controlled by another

Windows application. For example, you can control or manipulate a Paradox
table with Paradox for Windows, or the Database Desktop that ships with
Delphi. Typically, to edit or modify a table, you open one of these applications
to handle the work. But this is not the only way to do it.

Let’s say that you want to create an application manager program that runs a set of applications
to display a corresponding set of data files on a single screen or page of text. Imagine a scenario
where you could:
• obtain the values of your favorite stocks from an Internet provider
• view the data in a table
• manipulate the data and display results with a Delphi model application
• store the results in a second Paradox table
d’s Insert | Object menu item to
In addition, all these applications could be open on the screen
simultaneously.

Alternatively, you could display several kinds of data in a single doc-
ument using OLE (Object Linking and Embedding). For example,
in Microsoft Word you can use the Insert | Object command, or its
OLE drag-and-drop capability to insert objects into a Word docu-
ment (see Figure 1).

This article begins an exploration of Delphi’s OLE capability. You’ll
create an OLE object manager application called Objman that uses
two forms to maintain a group of MDI child windows and the
object that each child window contains. In the Objman project, its
main form, OLEFrameForm, is an MDI form that manages the
group of MDI child windows based on the form class described in
Delphi INFORMANT ▲ 34

The Way of Delphi

Figure 2: Our main form, OLEFrameForm, at
design time.

Figure 3:
Use the
Menu
Designer to
add a menu
item
(&File) and
a sub-menu
item (&New
Object
Window).
OLEOBJ.PAS. This is the unit for the form, OLEObjectForm,
that manages the objects.

Each time a user selects File | New Object Window from the applica-
tion’s menu, a child window is created to contain a new object.
Alternatively, users can drop an object onto OLEFrameForm and
automatically create a new child window containing the dropped
object. Additionally, OLEFrameForm has event procedures for cas-
cading and tiling child windows and arranging child window icons.

Note that any child window will use OLEFrameForm for basic
window management. Therefore, a child window must reference
OLEFrameForm in its unit’s implementation section to avoid a
circular reference. This is necessary because OLEFrameForm uses
the child’s unit, OLEOBJ.PAS, in the interface section of its unit.

You can use the Objman application to launch sets of applica-
tions and documents, as a model for a more complex File
Explorer-type application, or as a file or application organizer.
But before we get into the project details, let’s briefly review a
few central aspects of OLE.

OLE Servers, Containers, and Objects
Basically, OLE is a way for applications to share data. It differs
from DDE (Dynamic Data Exchange) by allowing the “glue”
application to connect to the OLE server application that creat-
ed the data. [For more information on DDE, see Gary
Entsminger’s article “Great Journeys, Single Steps” in the
January 1996 Delphi Informant.]

In DDE, you simply receive a copy of data, but not the applica-
tion that created it. Additionally, you cannot edit the original
data. In OLE, you get both — the data and the application that
created it. Therefore, you can use the application to manipulate
the data.

The application that creates an OLE object is called the OLE
server and you use it to edit the object. For example, you can use
Microsoft Excel as an OLE server to edit spreadsheets. Likewise,
the Borland Database Desktop can be used as an OLE server to
edit tables.

In short, in an OLE interaction, one application acts as the serv-
er and another as an OLE container that contains the OLE
objects. The OLE object is the data — or a representation of the
data — that the OLE server creates and maintains (e.g. a spread-
sheet, table, .TXT file, .DOC file, etc.).

In the Objman project, you’ll use Delphi to create an OLE contain-
er application that can interact with many OLE server applications.

Creating the Project
As mentioned, Objman uses two forms (an MDI container
and an OLE object container) to allow users to add new MDI
children that contain OLE objects. Each window can contain
one OLE object. In one step, the user can drag an object onto
the main form to create an MDI child and a link to the
FEBRUARY 1996
dragged object. Alternatively, in two steps, the user can create
a child window and paste an object from the Clipboard into a
child window.

First, we’ll create the user interfaces of both forms, and then
we’ll write the “glue” code. To begin, create a new project by
selecting File | New Project from Delphi’s menu. Delphi will
automatically create a form and its corresponding unit. Then
select File | Save Project As and save the form’s unit as OLE-
FRAME.PAS. This will be the main form. Save the project as
OBJMAN.DPR.

In the Object Inspector, change the form’s FormStyle property to
fsMDIForm. This establishes the form as an MDI “parent.” Now
change the form’s Caption property to OLE Object Manager,
and change its Name property to OLEFrameForm. Figure 2 shows
our form in design view.

From the Standard page of the Component Palette, select the
MainMenu component and add it to the form. Double-click on
the MainMenu component to display the Menu Designer. Add a
menu item (&File), and a sub-menu item (&New Object Window)
as shown in Figure 3.
Merging MDI Menus
MDI applications always merge the menus of child windows
with the main menu of the parent MDI window (i.e. form).
However, you can control how this merging occurs.

All menu items have a GroupIndex property that is used to speci-
fy whether menu items are inserted or replaced in a menu. By
default, all items in a menu have the same GroupIndex value, but
you can explicitly change these values according to a group of
menu merging rules.
Delphi INFORMANT ▲ 35

The Way of Delphi
For instance, any menu item with a GroupIndex property of 1,
3, or 5 will be replaced by the menu items with correspond-
ing index values in the MDI child (the OLE server). Merging
the menus of the OLE server and its container is called in-
place activation.
Figure 4: Set the
GroupIndex property
of the File1 menu item
Note that in non-MDI applications,
the main menu’s AutoMerge property
determines if the menus (TMainMenu)
of forms other than the main form
merge with the principal form’s main
menu in non-MDI applications at run
time.

To complete the visual aspect of
OLEFrameForm, set the GroupIndex
property of the File1 menu item to 1
(see Figure 4). We’ll add code after we
design the OLE container child window.
to 1.
Creating the Child
OLEObjectForm is the child form that will contain OLE objects.
Each child window features one OLEContainer component (the
OLE container) to hold OLE objects. When a new MDI child
window is created, it’s responsible for managing the object con-
tained in its OLE container.

The OLE container can receive an object from the Clipboard,
or as the result of a drag-and-drop event. Once an object is
contained by the OLE container, we can then use the contain-
er’s built-in capability to edit the object or the object package.
In addition, we can copy objects to the Clipboard as well as
paste them from the Clipboard into the OLE container.

To create our second form, select File | New Form from Delphi’s
menu, and save the unit as OLEOBJ.PAS. This will be the blue-
print for a child form. Change the form’s FormStyle property to
fsMDIChild to establish the form as a child window. Change the
form’s Name property to OLEObjectForm. From the System page
of the Component Palette, select the OLEContainer component
and add it to the form.

From the Standard page of the Component Palette, select a
MainMenu component and place it on the form. Use the
Menu Designer to add the menu items, &File, &Edit, and
&Window, and implement their sub-menu items as follows:
• Under &File, add &New Object Window and E&xit.
• Under &Edit, add &Copy Object to Clipboard, &Paste

Object from Clipboard, and &Object.
• Under &Window, add &Cascade, &Tile, and Arrange

&Icons.

In the Object Selector, select the &Object menu item and set
its Enabled property to False. The Edit | Object command
remains dormant until the OLE container holds an object.
When the container has an object, Edit | Object becomes active
and allows the user to access the object. The user can then
FEBRUARY 1996
open, edit, or convert the object within the OLE container.
Although you always add this menu item when using OLE
containers, you never write event code for it. OLE handles it.

To enable each child to merge its File1 menu items with
OLEFrameForm’s File1 menu, set the GroupIndex property of the
File1 menu item to 1 (to match the OLEFrameForm’s File1 menu
item). If you’re in an experimental mood, try leaving either the
main menu’s File1 GroupIndex property or the child’s set to 0.
Either way the second File1 menu item is added to the first, not
replaced.

Figure 5 shows OLEObjectForm at design time.

Adding Object Pascal
Let’s begin with our main form, OLEFrameForm. First, you
must write a routine to create and show a child form. The
CreateMDIChild function creates a new child form of type
TOLEObjectForm:

function TOLEFrameForm.CreateMDIChild: TOLEObjectForm;
begin

{ Create a new MDI child }
Result := TOLEObjectForm.Create(Self);
{ Show the child }
Result.Show;

end;

This is the form type declared and implemented in
OLEOBJ.PAS. However, note that other children could be
created just as easily with this pattern.

Dragging and Dropping Objects
Before attempting to paste (e.g. drag-and-drop) objects into an
OLEContainer, you must register Clipboard formats for the
type of object you want to drag-and-drop (e.g. linked or embed-
ded OLE objects). For example, Delphi uses these formats to
initialize the array passed in the Fmts parameter of the
PasteSpecialDlg function:

if PasteSpecialEnabled(Self,OLEFrameForm.Fmts) then

and in the Fmts parameter of the RegisterFormAsOLEDropTarget
procedure:

RegisterFormAsOleDropTarget(Self,Fmts)

Now, we’ll register the Clipboard formats. First, declare a
FLinkClipFmt variable of type Word in the private section of the
OLEFrameForm class:

private
{ Private registration declarations }
FLinkClipFmt: Word;

Now, declare an array of type BOLEFormat with one element
for each object format to be processed. For example, to allow
dragging and dropping of linked objects only, declare a one-
element array. Likewise, to allow dragging and dropping of
linked and embedded objects declare a two-element array.
Delphi INFORMANT ▲ 36

The Way of Delphi

Figure 5: OLEObjectForm at design time.

Figure 6 (Top): Registering the form.
Figure 7 (Bottom): The FormDragDrop procedure.

procedure TOLEFrameForm.FormCreate(Sender: TObject);
begin

{ Register this form to allow drag-and-drop }
FLinkClipFmt := RegisterClipboardFormat('Link Source');

{ Initialize the registration array }
Fmts[0].fmtId := FLinkClipFmt;
Fmts[0].fmtMedium := BOLEMediumCalc(FLinkClipFmt);
Fmts[0].fmtIsLinkable := True;
StrPCopy(Fmts[0].fmtName, '%s');
StrPCopy(Fmts[0].fmtResultName, '%s');

{ Register the form }
RegisterFormAsOleDropTarget(Self, Fmts)

end;

procedure TOLEFrameForm.FormDragDrop(
Sender,Source: TObject; X, Y: Integer);

var
NewMDIChild: TOLEObjectForm;

begin
{ Is the dropped object usable? }
if Source is TOLEDropNotify then

begin
{ Then create a new child }
NewMDIChild := CreateMDIChild;
{ Give the OLE container info about the object }
with Source as TOLEDropNotify do

NewMDIChild.OLEContainer.PInitInfo := PInitInfo
end;

end;
In this project, let’s simplify the process by registering only
linked objects. Thus, we need a single-element array. Declare this
array in the public section of the OLEFrameForm class:

public
{ Public registration info for drag-and-drop --

a single-element array to allow linking only }
Fmts: array[0..0] of BOLEFormat;

To continue, initialize the fmtId, fmtMedium, fmtIsLinkable,
fmtName, and fmtResultName fields of each BOLEFormat ele-
ment of the array. Use the Object Pascal BOLEMediumCalc
function to calculate the value of the fmtMedium field that
corresponds to the value of the fmtId Clipboard format.

BOLEMediumCalc returns the BOLEMedium value to use with
the Clipboard format ID passed in the fmtId parameter.
BOLEMedium is the type of the fmtMedium field of the
BOLEFormat record. In this project, we handle the registration
process when we create the OLEFrameForm (see Figure 6).

OLEFrameForm’s FormDragDrop event procedure is triggered
each time an object is dropped onto the form (see Figure 7).
After each drop, the TOLEDropNotify object is used to evalu-
ate the Source object that’s been dropped onto the form. If
Source is of type TOLEDropNotify, then a new child window
will be created to contain the dropped object. The new child
window is created by the NewObject1Click procedure:

procedure TOLEFrameForm.NewObject1Click(Sender: TObject);
var

NewMDIChild: TOLEObjectForm;
begin

{ Create a new MDI child }
NewMDIChild := CreateMDIChild;

end;

Control then passes to the new child window when it’s displayed
on screen (see the CreateMDIChild procedure). The complete
code for OLEFRAME.PAS is shown in Listing Seven beginning
on page 40.

OLEOBJ.PAS
Next, let’s proceed to the code for the child form,
OLEObjectForm. Since OLEFrameForm is the MDI manager,
menu items on child windows must ask OLEFrameForm to
handle window management when the user requests it.
FEBRUARY 1996
First, the TOLEObjectForm.NewObjectWindow1Click event pro-
cedure tells OLEFrameForm to create a new child:

procedure TOLEObjectForm.NewObjectWindow1Click(
Sender: TObject);

begin
{ Ask the OLEFrame to create a new child }
OLEFrameForm.NewObject1Click(Sender)

end;

Next, the TOLEObjectForm.Cascade1Click event procedure sends
a message to OLEFrameForm to cascade the child windows:

{ Ask the OLEFrame to handle child window behavior }
procedure TOLEObjectForm.Cascade1Click(Sender: TObject);
begin

OLEFrameForm.Cascade
end;

The TOLEObjectForm.Tile1Click event procedure instructs
OLEFrameForm to tile the child windows:

procedure TOLEObjectForm.Tile1Click(Sender: TObject);
begin

OLEFrameForm.Tile
end;

At this point, the TOLEObjectForm.ArrangeIcons1Click event
procedure informs OLEFrameForm to arrange any minimized
child window icons:
Delphi INFORMANT ▲ 37

FEBRUARY 1996

The Way of Delphi

Figure 8 (Top): The TOLEObjectForm.PasteObject1Click event proce-
dure. Figure 9 (Middle): Here, Objman is shown with Microsoft
Word in a child window. Figure 10 (Bottom): In this running exam-
ple of Objman, the user is entering information into a table with the
Database Desktop.

procedure TOLEObjectForm.PasteObject1Click(Sender: TObject);
var

ClipFmt: Word;
DataHand: THandle;
{ Pointer to the object’s info }
Info: Pointer;

begin
if PasteSpecialEnabled(Self, OLEFrameForm.Fmts) then

{ Show the user a PasteSpecial dialog to permit the
user to decide the specifics of the Object paste }

if PasteSpecialDlg(Self, OLEFrameForm.Fmts, 0,
ClipFmt, DataHand, Info) then

begin
OLEContainer.PInitInfo := Info; {the object’s info }
ReleaseOLEInitInfo(Info);

end;
end;
procedure TOLEObjectForm.ArrangeIcons1Click(Sender: TObject);
begin

OLEFrameForm.ArrangeIcons
end;

The TOLEObjectForm.Edit1Click event procedure keeps track
of the Clipboard’s contents. Each time the user selects Edit

from the menu, the Edit item’s sub-menus appear after a check
for a pasteable object is made. If a pasteable object is detected
in the Clipboard, PasteObject1 is enabled:

{ If there's no pasteable object in the Clipboard,
disable the PasteObject menu item. }

procedure TOLEObjectForm.Edit1Click(Sender: TObject);
begin

PasteObject1.Enabled :=
PasteSpecialEnabled(Self, OLEFrameForm.Fmts)

end;

Copy and Paste Procedures
The TOLEObjectForm.CopyObject1Click event procedure
copies the OLEContainer’s object in the active child window
to the Clipboard:

procedure TOLEObjectForm.CopyObject1Click(Sender: TObject);
begin

OLEContainer.CopyToClipboard(False);
end;

Finally, the TOLEObjectForm.PasteObject1Click event proce-
dure (see Figure 8) pastes the OLEContainer’s object from the
Clipboard into the OLE container in the active child window.
Figures 9 and 10 show Objman at run time. Feel free to
explore and modify the application. (The complete code for
OLEOBJ.PAS is shown in Listing Eight on page 40.)

Conclusion
In the next installment, we’ll continue our OLE discussion as we
implement additional functionality in our OLE Object Manager.
For example, to allow a user to selectively close child windows, a
parent window needs to keep track of its children (in an array, for
example), then match a user’s selection from a menu (or equivalent)
to the corresponding child window. Deleting a child is equivalent to
deleting an object. In Objman2, we’ll get to that. See you then. ∆

The demonstration project referenced in this article is available on
the Delphi Informant Delphi Informant Works CD located in
INFORM\96\FEB\DI9602GE.
Delphi INFORMANT ▲ 38

Gary Entsminger is the author of The Way of Delphi [Prentice-Hall, 1996], The Tao of
Objects [M&T Books, 1995], Secrets of the Visual Basic Masters [Sams, 1994], and
Developing Paradox Databases [M&T Books, 1993].

The Way of Delphi
Begin Listing Seven — OLEFRAME.PAS
unit OLEFrame;

{ Description: An OLE main MDIform to contain MDI child

windows. Use this form to launch and manage MDI child

windows.

In the project, OBJMAN.DPR, in this article, OLEFRAME.PAS

launches MDI child windows described in OLEOBJ.PAS.

This OLEOBJ.PAS unit is responsible for managing

the objects.

The OLEFrame is the main form for the OLE Object Manager.

Each time a user selects New Object Window from its main

menu, it creates a child window to contain a new object.

Alternatively, users can drop an object onto this form to

create a new child window containing the dropped object.

This form is an MDI window. It contains event procedures

to cascade and tile child windows and arrange child

window icons.

Note that any child window using this MDI container,

OLEFrame, must reference this form in the implementation

section of its unit to avoid a circular reference.

This is necessary because this unit uses its child unit,

OLEOBJ.PAS, in the interface part of this unit.

Code Patterns:

Derive a new form from TForm (inheritance).

Merge Parent and Child MDI menus.

Register a form to allow drag-and-drop. }

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes,

Graphics, Controls, Forms, Dialogs, Menus, ExtCtrls,

BOLEDefs, TOCtrl,

{ This is the child unit for this project };

OLEObj

type

TOLEFrameForm = class(TForm)

MainMenu1: TMainMenu;

File1: TMenuItem;

NewObject1: TMenuItem;

{ Menu item event procedures }

procedure NewObject1Click(Sender: TObject);

procedure Exit1Click(Sender: TObject);

{ Form event procedures }

procedure FormCreate(Sender: TObject);

procedure FormDragDrop(

Sender, Source: TObject; X, Y: Integer);

private

{ Private registration declarations }
FEBRUARY 1996
FLinkClipFmt: Word;

public

{ Public registration info to drag-and-drop

a single-element array to allow linking only }

Fmts: array[0..0] of BOleFormat;

{ Public created MDI child that can be

accessed from child forms }

function CreateMDIChild: TOLEObjectForm;

end;

var

OLEFrameForm: TOLEFrameForm;

implementation

{$R *.DFM}

procedure TOLEFrameForm.FormCreate(Sender: TObject);

begin

{ Register this form to allow drag-and-drop }

FLinkClipFmt := RegisterClipboardFormat('Link Source');

{ Initialize the registration array }

Fmts[0].fmtId := FLinkClipFmt;

Fmts[0].fmtMedium := BOLEMediumCalc(FLinkClipFmt);

Fmts[0].fmtIsLinkable := True;

StrPCopy(Fmts[0].fmtName, '%s');

StrPCopy(Fmts[0].fmtResultName, '%s');

{ Register the form }

RegisterFormAsOleDropTarget(Self, Fmts)

end;

function TOLEFrameForm.CreateMDIChild: TOLEObjectForm;

{ Create a child form of TOLEObjectForm type }

{ Note that other children could also be created

using this pattern }

begin

{ Create a new MDI child }

Result := TOLEObjectForm.Create(Self);

{ Show the child }

Result.Show;

end;

procedure TOLEFrameForm.Exit1Click(Sender: TObject);

begin

Close

end;

{ Create a new child for a dropped object.

The new child will contain the dropped object.}

procedure TOLEFrameForm.FormDragDrop(

Sender, Source: TObject; X, Y: Integer);

var

NewMDIChild: TOLEObjectForm;

begin

{ Is the dropped object usable? }

if Source is TOLEDropNotify then
Delphi INFORMANT ▲ 39

The Way of Delphi
begin

{ Then create a new child }

NewMDIChild := CreateMDIChild;

{ Give the OLE container info about the object }

with Source as TOLEDropNotify do

NewMDIChild.OLEContainer.PInitInfo := PInitInfo

end

end;

procedure TOLEFrameForm.NewObject1Click(Sender: TObject);

var

NewMDIChild: TOLEObjectForm;

begin

{ Create a new MDI child }

NewMDIChild := CreateMDIChild;

end;

end.

End Listing Seven
Begin Listing Eight — OLEOBJ.PAS
unit OLEobj;

{ Description: A child form to contain OLE objects.

In the project, OBJMAN.DPR, OLEFRAME.PAS launches

MDI child windows described in this unit, OLEOBJ.PAS.

This OLEOBJ.PAS unit is responsible for managing the

objects. This form manipulates an object contained by a

TOLEContainer component.

The OLE container can get an object from the Clipboard or

by a drag-and-drop operation. This allows good object

linking capability and keeps the application simple and

easy to understand, but does not allow objects to be

inserted directly into the OLE container without the

use of a drag/drop event or the Clipboard.

* It allows basic editing of the object or the object

package contained by a TOLEContainer component.

* It can copy an object to the clipboard or paste an

object from the clipboard.

* It allows the user to manipulate child windows

(Create, Tile, Cascade windows and Arrange Icons) by

using the OLEFrame form class described in the

OLEFRAME.PAS unit.

* The OLEFrame is the main form for the OLE Oject

Manager.

* It creates a child window for each object and manages

the child windows.

Code Patterns:

Derive a new form from TForm (inheritance).

Use the OLEContainer component.

Use the Clipboard to copy and paste objects. }

interface

uses
FEBRUARY 1996
SysUtils, WinTypes, WinProcs, Messages, Classes,

Graphics, Controls, Forms, Dialogs, ToCtrl, Menus;

type

TOLEObjectForm = class(TForm)

OleContainer: TOleContainer;

{ Menu system }

MainMenu1: TMainMenu;

File1: TMenuItem;

NewObjectWindow1: TMenuItem;

Exit1: TMenuItem;

N1: TMenuItem; { A line for looks }

Edit1: TMenuItem;

CopyObject1: TMenuItem;

PasteObject1: TMenuItem;

OLEObjectMenuItem: TMenuItem;

Window1: TMenuItem;

Cascade1: TMenuItem;

Tile1: TMenuItem;

ArrangeIcons1: TMenuItem;

{ Menu item click event procedures }

procedure NewObjectWindow1Click(Sender: TObject);

procedure Exit1Click(Sender: TObject);

procedure Edit1Click(Sender: TObject);

procedure CopyObject1Click(Sender: TObject);

procedure PasteObject1Click(Sender: TObject);

procedure Cascade1Click(Sender: TObject);

procedure Tile1Click(Sender: TObject);

procedure ArrangeIcons1Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

OLEObjectForm: TOLEObjectForm;

implementation

{ Uses the MDI container, OLEFrame, in the implementation

section to avoid a circular reference }

uses OLEFrame;

{$R *.DFM}

procedure TOLEObjectForm.NewObjectWindow1Click(

Sender: TObject);

begin

{ Ask the OLEFrame to create a new child }

OLEFrameForm.NewObject1Click(Sender)

end;

procedure TOLEObjectForm.Exit1Click(Sender: TObject);

begin

OLEFrameForm.Exit1Click(Sender)

end;
Delphi INFORMANT ▲ 40

The Way of Delphi
{ Ask the OLEFrame to handle child window behavior }

procedure TOLEObjectForm.Cascade1Click(Sender: TObject);

begin

OLEFrameForm.Cascade

end;

procedure TOLEObjectForm.Tile1Click(Sender: TObject);

begin

OLEFrameForm.Tile

end;

procedure TOLEObjectForm.ArrangeIcons1Click(

Sender: TObject);

begin

OLEFrameForm.ArrangeIcons

end;

{ If there's no pasteable object in the Clipboard,

disable the PasteObject menu item. }

procedure TOLEObjectForm.Edit1Click(Sender: TObject);

begin

PasteObject1.Enabled :=

PasteSpecialEnabled(Self, OLEFrameForm.Fmts)

end;

{ Clipboard Copy and Paste object procedures }

procedure TOLEObjectForm.CopyObject1Click(Sender: TObject);

begin

OLEContainer.CopyToClipboard(False);

end;

procedure TOLEObjectForm.PasteObject1Click(

Sender: TObject);

var

ClipFmt: Word;

DataHand: THandle;

Info: Pointer;

begin

if PasteSpecialEnabled(Self, OLEFrameForm.Fmts) then

{ Show the user a PasteSpecial dialog to permit the

user to decide the specifics of the Object paste }

if PasteSpecialDlg(Self, OLEFrameForm.Fmts, 0,

ClipFmt, DataHand, Info) then

begin

OLEContainer.PInitInfo := Info;

ReleaseOLEInitInfo(Info);

end;

end;

end.

End Listing Eight
FEBRUARY 1996 Delphi INFORMANT ▲ 41

HyperTerp Pro
HyperAct’s Scripting Language for Delphi

New & Used
b y Robert Vivrette
H yperTerp Pro is, simply put, a scripting lan-
guage. It enables developers to implement
user-definable programming scripts into

their applications. To many of us, the real need for
such a capability may not be clear, so hopefully in
this review I can explain enough about HyperTerp to
clarify this. But first, let me provide a brief definition
of a scripting language.

What Is a Scripting Language?
A Delphi programmer writes a program using Object Pascal,
which is then converted into machine code by the Delphi
compiler. However, suppose that you want your program’s
users to also have some control over the code in the applica-
tion. You can’t ship a Delphi compiler to each user, can you?
Besides, I don’t think you want them fiddling with your code.

Instead, you can provide a scripting ability within your pro-
gram. The user could write scripts, or macros (whatever you
want to call them), to perform some user-defined — rather
than application-defined — task. These scripts could do pret-
ty much anything that you might think of. For example:
• A charting program that graphs mathematical formulas.

The user could define the formulas, as well as define how
the graph will appear. I am not just talking about “pick a
graph type from one of the X number available.” Rather,
the user could write an actual script or sub-program that
would take the formula results and then draw, plot, or
print the data in a specified format.

• An automation system. The user could define various
chores that would be automated through the use of
scripts. This may include a complex file or database
maintenance, or even an “agent” system that manages
various programs on your computer (e.g. retrieving e-
mail, automated report printing, examining network
devices, etc.).
FEBRUARY 1996
Many of us are familiar with DOS batch files. These are actu-
ally a rudimentary form of a scripting language. UNIX pro-
vides a much more sophisticated scripting language. A script-
ing language such as HyperTerp is similar to these, but more
tailored to a Windows environment. Whereas the first two
examples run within an operating system, DOS and UNIX
respectively, HyperTerp runs within your application.

There are two basic limitations to the use of a scripting language.
The first is that the scripting language itself will almost always be
a subset of a more powerful language. Simply put, there may be
some commands in a language that, for various reasons, simply
do not transfer into a scripting language. The second limitation
is speed — scripting languages are almost always interpreted
rather than compiled; there is a scripting interpreter that takes
the user’s commands and executes them one at a time.

HyperTerp for Delphi
HyperTerp is a scripting language for Delphi, and there are
also versions that support C++ and Borland Pascal. Some of
HyperTerp’s roots extend back to a similar product called
PasterP that some readers will no doubt be familiar with.

The language used in HyperTerp has a “Pascal-ish” structure
with a bit of BASIC thrown in for good measure. Figure 1 shows
the demonstration program that can load and execute all the
sample scripts included with HyperTerp. This script is a short
program that draws various graphic shapes on a canvas and
should give you a good idea of how the language is structured.

Incorporating the HyperTerp scripting language into your appli-
cation is fairly straightforward. The installation steps add a com-
ponent to Delphi’s Component Palette. Placing one of these
components on a form (typically the main form) attaches the
scripting interpreter to your program. The interpreter “object” is
responsible for performing all the HyperTerp script processing
and will add about 150K of overhead to the application.
Delphi INFORMANT ▲ 42

Figure 1: The demonstration program included with HyperTerp show-
ing some of its graphics capabilities.

Robert Vivrette is a contract programmer for a major utility company and
Technical Editor for Delphi Informant. He has worked as a game design-
er and computer consultant, and has experience in a number of pro-
gramming languages. He can be reached on CompuServe at
76416,1373.

New & Used
After dropping the interpreter component onto your project,
you will need to write a couple of event handlers to provide
links between your program and the scripting engine. The
demonstration program includes about four or five event han-
dlers of about six to eight lines of code each. If you know
what you want HyperTerp to do, it won’t take long to make
these connections.

The HyperTerp script files are ASCII text files, and it’s a sim-
ple matter to create a quick program that loads/saves and exe-
cutes these scripts. (Actually, the sample program described in
the documentation does just this.)

Inside HyperTerp
As mentioned, HyperTerp is a subset of Pascal. The Standard
function library includes 19 math, 10 string, six file, and two
memory functions and procedures. The Extended library adds
six more file functions and six system functions (primarily
date/time stuff). The Windows library adds 27 of the more
common Windows API routines, allowing scripts to create
windows, dialog boxes, add and manipulate controls, access
profile strings from .INI files, and so on.

There are also some procedures and functions unique to its
language. For example, the ForEachFile procedure allows the
user to automatically traverse all the files that match a valid
DOS wildcard mask in the current directory (and optionally
in all the subdirectories) and perform a common operation
on each of these files.

Because HyperTerp is a subset of a more powerful lan-
guage, users may occasionally need a function or procedure
that is not currently supported. In the past, HyperAct has
released updated versions that support additional program-
ming functions and procedures, and this policy will surely
continue.

Due to its interpreted nature, HyperTerp probably won’t
break speed records, but it is nonetheless a capable, solid
system. What it does, it does very well. I don’t need the fea-
tures it provides, but I know there are many developers
who would welcome HyperTerp’s power and flexibility.
FEBRUARY 1996
Documentation
My one key complaint with
HyperTerp regards its docu-
mentation. Its accompanying
manual is a flimsy, 20-page
affair that covers installation of
the software, a simple tutorial,
a four-page reference on the
three variations of the script
interpreter, and a few more
pages of some extensions to
the example code. As someone
new to scripting languages, the
documentation creates more
questions than it answers.

Fortunately, the package
includes two help files. One
is (for the most part) an elec-
tronic form of the printed
material, while the other is a
fairly complete language ref-
erence file. I would have liked
to see some more detailed
discussion of some of the
commands, but it’s sufficient
as a reference on the scripting language. You’ll find that you’ll
be working quite close to this language reference as you get
up to speed with HyperTerp’s scripting syntax. The inclusion
of this reference went a long way toward taking the bad taste
out of my mouth caused by the printed “manual.”

HyperTerp comes in two flavors. The standard version
includes the .DCU files for the component objects and sells
for US$149. The professional version adds all the source code
files as well and sells for US$395. There are no royalties for
distributing the scripting engine. The enclosed literature indi-
cates that the scripting engine will work within a DLL if
desired. Both versions are completely native Delphi objects —
no DLLs or VBXes. HyperAct has provided a demonstration
version of HyperTerp in library 22 (3rd Party Products) of the
Borland Delphi forum on CompuServe (GO DELPHI). The
file name is PTRPDEMO.ZIP. They also have a Web site at
http://www.hyperact.com/.

Conclusion
If you need the ability to provide a scripting system within
your Delphi applications, you need look no further than
HyperTerp Pro. Printed documentation aside, the whole
package is stable and capable. ∆

HyperTerp Pro by HyperAct, Inc. is a
scripting language that programmers can
include in their Delphi applications. With
HyperTerp, users can implement custom
scripts (or macros) to add user-defined
functionality to the program. This can be
done by adding a HyperTerp component
to the Component Palette, which in turn
automatically attaches a scripting inter-
preter to the program. Although the doc-
umentation is lacking, HyperTerp
includes a solid online language refer-
ence to assist you with the scripting syn-
tax. If your system requires scripting,
HyperTerp Pro is the tool for you.

HyperAct, Inc.
3437 335 Street
West Des Moines, IA 50266
Phone: (515) 987-2910
Fax: (515) 987-2909
E-Mail: CIS:76350,333 or Internet:
rloewy@panix.com
Web Site: http://www.hyperact.com/
Price: Standard version, including
the .DCU files, US$149; Professional
version that includes all source code
files, US$395. There are no royalties
for distributing the scripting engine.
Delphi INFORMANT ▲ 43

WISE Installation System
Create Distribution Diskettes Quickly and Easily

New & Used
b y Micah j. Bleecher

Figure 1: The WISE screen layout showing all the script actions.
I f you’re in the market for a powerful, easy-to-
use Windows application installation system,
then waste no time and order the WISE

Installation System Version 4.0 by Great Lakes
Business Systems (GLBS) today. In my search for a
solid installation utility, no other package could
compare to the combination of power, performance,
and ease-of-use provided by WISE. The other pack-
ages I examined either lacked crucial features or
required that I learn another programming lan-
guage just to create an installation program. WISE
beautifully combines the best of both worlds.

Most people believe that installation utilities are reserved for
developers of commercial or vertical software. However, WISE
(the acronym for Windows Self-Installing Executable), is so easy
to use that it’s also an excellent choice to replace standard com-
pression utilities for custom software developers to perform
installations and upgrades.

The IDE
The IDE (Integrated Development Environment) comes in both
16- and 32-bit versions, although they both produce a 16-bit single
installation file. It will create one large file for electronic deliveries
or divide the file so it will span multiple floppy disks if necessary.

The screen layout is intuitive, as seen in Figure 1. The left side of
the screen displays a list box containing 57 script actions and the
right side displays a list of the selected script actions. To use a script
action, simply highlight it and drag it to the selection window.

When you run the compiled installation program, each action is
executed sequentially, much like a batch file. Although the WISE
FEBRUARY 1996
manual refers to these as script actions, the text of the selected action
is not directly editable. Script actions must be edited by double-
clicking on the appropriate line that displays a property editor.

In addition, a different property editor is available for each script
action. Examine the Set Variable property editor in Figure 2. If
you’re a Borland product user, you will naturally want to right-click
on a script action. It’s important to note that the Properties choice
on the resulting menu is the global properties for the project. Select
Edit to modify the properties for the selected script action.

In addition to numerous examples, WISE has an Installation
Expert that guides you through the entire process, and the resulting
script can be edited as if you started from scratch. It’s so easy that
you can create a professional install script in a matter of minutes.

Programming and Control Structures. Although there are only
57 script actions, these are more than enough to do anything
Delphi INFORMANT ▲ 44

New & Used

Figure 2: The Set Variable property editor.
Figure 3 : A custom dialog box that resembles a Microsoft Wizard.
you want or need to model your installation logic. You can create
an unlimited number of variables or use pre-defined system vari-
ables that can be referenced throughout your script and within
custom dialog boxes.

There are no GOTO actions, but you can accomplish your
objectives by using the built-in IF, THEN, ELSE, and
WHILE actions for conditional branching and looping. For
special needs, a string parsing action is conveniently available
if you are reading strings out of text files where only a portion
of the string is needed.

System Access. WISE features numerous actions that allow you
to interface with nearly every conceivable aspect of the operating
system. These include: reading/writing files and .INI files, locat-
ing files, checking system configuration, video resolution, avail-
able memory and disk space, installed hardware capabilities and
much more.

These features, along with the control structures, allow you to
create a single install project that behaves differently in vari-
ous operating systems. This functionality becomes extremely
important with the advent of Windows 95 and the growing
popularity of NT.

Custom Dialog Editor. To fully customize the user interface,
you can create custom dialog boxes using a variety of built-in
controls to present data and options to the user and then
return selected values to your script. These dialog boxes can
be saved to the disk so they can be shared between projects.
There are numerous samples, an example script that uses cus-
tom dialog boxes to create an MS Wizard-like install program
(see Figure 3), and a host of pre-written templates for a vari-
ety of functions.

Extendibility and Interoperability. If you cannot find what
you need in the built-in script actions, you can easily call a
function from within a DLL or run an executable file. This
can be helpful when calling an external serializing module or
migrating data during software upgrades. For unusual circum-
FEBRUARY 1996
stances, your install program can even be controlled using
DDE (Dynamic Data Exchange). Code samples of DLLs
using Delphi and C are provided in addition to an explana-
tion of how the DDE functionality works using Visual Basic.

Multi-Media Support. To add a little pizzazz to your installa-
tions, you can implement custom graphics and play .WAV
files. WISE features a built-in graphics editor that is, while
elementary, adequate for most needs. You can display graphics
at any time during the installation process and simple anima-
tion effects, including fade-in, are supported. Most important
however, is the ability to directly install fonts that are
required by your application.

Windows 95 Install Support. A host of new issues must be
considered when installing applications into Windows 95.
The following script actions are included to interact with this
operating system:
• Create shortcuts and shell links.
• Edit and retrieve registration database values.
• Self-registration of OCX and DLL modules.
• Support for and conversion between long and

short filenames.
• Get Win32 system directory.
• Windows 95 shared DLL counter support.
• Complete support for uninstall.

Specific BDE Support. When working with Borland products
it’s important to install and configure the BDE (Borland
Database Engine). Unfortunately, using the separate install pack-
age for the BDE that is provided with Delphi is simply awkward
and unprofessional.

Fortunately WISE manages these tasks quite easily. A sample
BDE configuration script is included that you can import into
your projects. You can configure both BDE system parameters
as well as add and configure aliases. You can see support for the
32-bit BDE that will be available shortly after Borland ships
their 32-bit products.
Delphi INFORMANT ▲ 45

FEBRUARY 1996

Micah Bleecher is a partner in Datacraft Systems, Inc., a database consulting firm that
serves the Northeast. They specialize in Delphi, Paradox, and Web database integra-
tion. Mr Bleecher can be reached at (609) 227-0202, e-mail:
micahb@datacraft.db.com, or visit the Datacraft Systems Web site at:
http: //www.datacraft.db.com.

The WISE Installation System, by
GLBS, Inc., is a solid installation utility
for Windows-based applications.
WISE’s IDE is intuitive and creates
16-bit installation files. Script actions
are executed as if they are batch files
and are edited in individual property
editors. An Installation Expert can also
guide you as you create an installa-
tion script. WISE also supports system
access, multi-media, Windows 95, the
BDE, and much more. If you’re look-
ing for the right installation tool,
WISE is a worthwhile investment.

WISE Installation System
Great Lakes Business Solutions, Inc.
2200 North Canton Center Road,
Ste. 220
Canton, Michigan 48187
Phone: (800) 554-8565
E-Mail: CIS: GO WISEINSTALL
Web Site: http://www.glbs.com/
Price: US$199; Annual Technical
Support Contract, US$95.

New & Used
For those of you accessing
data via ODBC, WISE easily
installs and configures both
16- and 32-bit ODBC drivers
as well.

Technical Support. The prod-
uct comes with 30 days of free
technical support. Although I
needed to leave a message on
voice mail, GLBS technical
support staff promptly
returned my call, was helpful,
and was knowledgeable of the
product. In addition, they
have a section in
CompuServe’s Windows
Third-Party H Forum. To
access this forum, type WISE-
INSTALL at the GO prompt
and GLBS will answer ques-
tions online. They are good
about making maintenance
releases available from their
BBS using passwords for regis-
tered users. An annual mainte-
nance contract entitles the
licensee to phone support beyond the first 30 days and free
upgrades throughout the year.

Demonstration Versions. You can download a demonstration
version of WISE from their CompuServe forum or from the
GLBS Web site at http://www.glbs.com. The demonstration
restricts you to using the resulting executable on the comput-
er it was created on, but is otherwise fully functional.

Conclusion
WISE has too many features to mention in the space of this article.
So don’t hesitate to download a demonstration and try WISE for
yourself. I am confident that you will be won over by this product
as I was. My only complaint is that I would like to see more detail
in the manual — not only regarding each of the features, but also
program installation methodology in general. There are many new
issues with Windows 95 and I would like to see some detailed infor-
mation on the subject, even in the form of a help or supplemental
text file. Nonetheless, the money I spent on WISE was well spent. I
wish I could say that about all developer utilities I’ve purchased. ∆
Delphi INFORMANT ▲ 46

	Table of Contents
	Symposium
	Delphi Tools
	Now Shipping: Apollo 2.0 For Delphi
	Announcing BSS Business Systems Software
	Add Spell Checking to Delphi Applications with EDSSpell
	Stylus Announces Telephony Support For Delphi

	NewsLine
	Borland Ships Three Versions of Delphi 2.0
	Borland Announces Agreement with Rios Corporation
	Delphi Informant on the Web
	Borland Endorses JavaScript
	Database & Client/Server World Set for Boston in March

	Delphi 2.0
	New UI Controls
	Multithreading
	Database Enhancements
	New IDE Features
	Noteworthy Changes
	Conclusion
	Sidebar - Windows 95 Common UI Controls

	DBOutline
	Creating a Self-Referencing Table
	Creating the Form
	Prior to Calculations
	Populating the Outline
	Understanding the Algorithm
	An Iteration
	Child’s Play
	One More Loop
	Drag and Drop
	Keeping the Table Synchronized
	Conclusion
	Listing One — Unit1

	Error Handling: Part I
	Handling Cleanup and Resource Allocations
	Trapping RTL Exceptions
	Understanding the RTL Exception Hierarchy
	Handling Multiple Exceptions
	Conclusion

	Filtering Tables: Part II
	Query versus Table Components
	Selecting Records with Queries
	Linked Queries
	Parameterized Queries
	Changing the SQL Property at Run Time
	Other Query Issues
	Conclusion
	Listing Two — The Paramu Unit
	Listing Three — The Paramu2 Unit
	Listing Four — The Sqlu1 Unit
	Listing Five — The Sqlu2 Unit
	Listing Six — The Sqlu3 Unit

	Creating an OLE Object Manager
	OLE Servers, Containers, and Objects
	Creating the Project
	Merging MDI Menus
	Creating the Child
	Adding Object Pascal
	Dragging and Dropping Objects
	OLEOBJ.PAS
	Copy and Paste Procedures
	Conclusion
	Listing Seven — OLEFRAME.PAS
	Listing Eight — OLEOBJ.PAS

	HyperTerp Pro
	What Is a Scripting Language?
	HyperTerp for Delphi
	Inside HyperTerp
	Documentation
	Conclusion

	WISE Installation System
	The IDE
	Conclusion

